Фотошторы с печатью 3d изображений: реальные фото в интерьере, рисунок 3д и, картинки на шторах в гостиную

3D-шторы

  1. Что это такое?
  2. Преимущества и недостатки
  3. Разновидности моделей
  4. Материалы
  5. Как выбрать?
  6. Советы по уходу
  7. Идеи для интерьера

Шторы создают уют в квартире, дополняют ее дизайн и могут стать изюминкой интерьера. Одни предпочитают изделия однотонные или с небольшими принтами, другие любят эксклюзив – как раз для таких людей существуют уникальные шторы с 3D эффектом. Они подчеркнут креативность и индивидуальный характер любой комнаты.

Что это такое?

С развитием современных технологий меняется дизайн интерьеров. Ярким примером является новое оформление штор с эффектом 3D. То есть на однородное полотно с помощью термостанка наносится изображение, которое затем фиксируется. Свойства ткани при этом не изменяются. Картинки могут быть разные: фрукты, цветы, пейзаж, животные и даже известные картины. Необходимо только подобрать подходящий вариант, но при этом учитывать некоторые особенности:

  • Объемные шторы нежелательно вешать на окна в комнате площадью меньше 18 кв. м. Из-за крупного изображения на изделии помещение будет визуально уменьшаться.
  • Лучшим вариантом будут те рисунки, которые продолжают комнату вглубь: аллея в парке, дорожка к пляжу, арка в сад и др.
  • 3D-шторы с рисунком не следует вешать, если обои в помещении уже имеют какие-то картины – визуально это будет выглядеть слишком громоздко.

Оттенок необходимо подбирать в тон интерьера или в контрастных цветах, соблюдая гармонию и баланс.

Преимущества и недостатки

Шторы с объемными картинками выглядят стильно и современно. Они набирают популярность среди покупателей благодаря целому ряду преимуществ:

  • Большой выбор изображений. Каждый приобретает изделие с наиболее уместным изображением для определенной комнаты.
  • Визуальное увеличение помещения. Шторы с рисунком не только украшают комнату, но и зрительно увеличивают ее площадь за счет эффекта присутствия и перспективы.
  • Практичность. Благодаря специальной УФ-печати, которая применяется во время нанесения рисунка, со временем он не выгорает и продолжает радовать своих хозяев долгие годы.
  • Экологичность. Краска, которая применяется при объемной фотопечати экологически чиста, поэтому абсолютно безопасна для здоровья человека. Это позволяет вешать изделие даже в детской комнате.
  • Легкость в уходе. Шторы с 3D-эффектом не нуждаются в особом уходе, поэтому их можно стирать и гладить, как обычные занавески.

Есть у таких изделий и недостатки, однако их намного меньше, чем достоинств. К минусам можно отнести то, что складки на шторах с объемным изображением очень заметны. Правда, рисунок при этом совершенно не искажается и выглядит реалистично.

Дизайнеры акцентируют внимание покупателей и на том, что 3D-шторы будут актуальными в стилях Электика и Хай-тек, а вот в интерьерах в стиле Классики или Модерна они будут ни к чему.

Разновидности моделей

Индивидуальные предпочтения играют важную роль при выборе штор с рисунком. Однако стоит также учитывать дизайн интерьера квартиры, где данное изделие будет являться элементом декора. В связи с этим есть несколько типов 3D-штор:

  • Японские. Они свободно перемещаются по карнизу, часто применяются как ширмы или мобильные перегородки.

  • Римские. Пользуются популярностью из-за необычной конструкции, которая позволяет устанавливать их в оконный проем, на стены или потолок. Обработка специальным составом отталкивает от поверхности изделия грязь и бактерии, предотвращает статику. В результате полотно становится износостойким.

  • Рулонные. Такие 3D-шторы устанавливаются согласно размерам окна. При закрытии сворачиваются в виде небольшого рулона. Так как они раскатываются по стеклу, то создают иллюзию шикарного вида из окна.

Материалы

Прежде чем приобретать красивые шторы, необходимо определиться с полотном, из которого они будут созданы. Одни ткани пропускают дневной свет и радуют хозяев объемным изображением только с заходом солнца, другие же даже днем не дают солнечным лучам проникать в квартиру. Изделия с объемным рисунком выпускаются из следующих материалов.

Натуральные:

  • Сатин. Хлопчатобумажный вид ткани. Отличается легкостью, но прочностью, приятен на ощупь. Его часто путают с атласом из-за внешнего блестящего вида.
  • Габардин. Материал, усеянный наклонными рубчиками. Он тонкий и в то же время прочный. Считается экологически безопасным, так как отлично пропускает воздух.
  • Шифон. Полупрозрачное полотно создается путем сочетания нескольких нитей: шелковых, хлопковых, синтетических. Данный вид ткани популярен среди покупателей.

Синтетические:

  • Вискоза. Такой вид материала создается из натурального сырья, но искусственным методом. Он хорошо пропускает воздух и поглощает влагу.
  • Полиэстер. Искусственное полотно, созданное из полиэфирных волокон. Данный материал быстро сохнет после стирки и при нагревании закрепляет свою форму.

Солнцезащитными материалами являются многослойные полотна, которые не позволяют солнечным лучам проникать в помещение.

Первые два вида имеют свои преимущества: несмотря на способность пропускать свет, они стойки к выгоранию и не теряют цвет после стирки. Последний тип полотна носит название Blackout. Особенностью такого портьерного материала является его трехслойная структура, где внутренняя часть – черная нитка, которая не пропускает свет. В результате изделие и утром, и днем, и ночью будет иметь эффектный вид. Такие объемные шторы пользуются большой популярностью.

Как выбрать?

Шторы с 3D эффектом уникальны тем, что можно самостоятельно подобрать изображение на них к дизайну своей квартиры. Выбирая рисунок, необходимо учитывать стиль интерьера. Перед тем, как совершить покупку, следует обратить внимание на следующие моменты:

  • С обивкой мебели одного оттенка хорошо сочетаются изделия с разноцветными элементами.
  • Классика отлично сочетается с итальянской мебелью и шторами с изображением дворца – выглядеть это будет величественно, изысканно и богато.
  • Если же возникло желание создать романтическую атмосферу, например, в спальне, можно приобрести 3D-шторы, на которых изображены цветы. А вот если на обоях уже есть розы, лилии, ромашки и другие виды цветов, то на шторах их быть не должно, иначе выглядеть это будет громоздко.
  • Для небольшой комнаты лучше выбрать изделие с изображением перспективного пейзажа, который зрительно расширит пространство, а для просторного помещения подойдет крупный рисунок.
  • На кухню можно приобрести шторы с орнаментом фруктов или овощей – они гармонично впишутся в интерьер.
  • Панорамный вид гор, вертикальный геометрический рисунок или изображения с растениями визуально приподнимают потолок.
  • Расширяет пространство комнаты 3D-шторы с картинкой парковой аллеи.
  • Рисунок с продолжением помещения будет роскошно смотреться в любой квартире.

Удачно подобрав изделие, можно создать эффектный дизайн интерьера.

Советы по уходу

Уход за 3D-шторами будет зависеть от того, из какого материала они созданы. Однако существуют общие требования, которых следует придерживаться. Одно из главных – проветривать изделие не менее одного раза в неделю. При выполнении этого условия не нужно будет часто стирать шторы. Если же такая необходимость возникла, следует придерживаться некоторых правил:

  • Стирать вручную или в стиральной машинке, но только при деликатном режиме.
  • Вода, в которой стирается изделие, должна быть не горячей 30 градусов.
  • Использовать для стирки щадящие средства.
  • Если шторы стираются в машинке, нельзя включать режим отжима. Лучше достать их оттуда и дать воде стечь.
  • Гладить только в крайних случаях.
  • Чтобы шторы были ровными, их вешают влажными.
  • Если это японский тип изделия, его просто протирают салфеткой, слегка смоченной в воде.
Читайте также:
Соединение воздуховодов между собой: как соединить круглые вентиляционные трубы с прямоугольными

При соблюдении перечисленных требований изделие с объемным рисунком прослужит своему владельцу долгое время.

Фоторезистор

Среди большого разнообразия фотоэлектрических приёмников есть и такие, которые меняют своё сопротивление под воздействием излучения. К ним относят фоторезисторы (фотосопротивления).

В зарубежной литературе фоторезистор называют Photoresistor, Photo conductive cell, Photocell, а также аббревиатурой LDR (от англ. – Light Dependent Resistor, “светозависимый резистор”).

Наряду с аббревиатурой LDR также используется сокращённое название CDS. Оно пошло от химической формулы сульфида кадмия (CdS) в связи с тем, что данное соединение широко применяется при производстве фоторезисторов.

Обозначение фоторезистора на схемах

На принципиальных схемах фоторезистор обозначается так же как и обычный резистор, но с небольшим отличием. Прямоугольник обведён кругом (иногда может отсутствовать), а снаружи его изображены две стрелки под углом 45°, которые символизируют падающий на чувствительный элемент поток излучения.

Данное обозначение считается новым и принято IEC (International Electrotechnical Commission), – международной электротехнической комиссией (МЭК).

Иное обозначение фоторезистора можно встретить на иностранных схемах. Сопротивление фоторезистора на нём изображается в виде ломаной линии.

Дело в том, что данное обозначение было принято IEEE (Institute of Electrical and Electronics Engineers), – институтом инженеров электротехники и электроники. Оно считается устаревшим, но встречается довольно часто.

Также очень редкое изображение, но может где и встретите.

Устройство и конструкции фоторезисторов

Несмотря на большое разнообразие фоторезисторов, конструкция их имеет схожую структуру. Основой является фоточувствительный элемент (сокращённо – ф.ч.э), который выполнен из полупроводникового материала, который чувствителен к электромагнитному излучению в видимом или инфракрасном диапазоне длин волн.

Фоточувствительный элемент может быть выполнен в виде пластинки монокристалла или же тонкого фоточувствительного слоя из полупроводника, который нанесён на поверхность изолирующей подложки из керамики, стекла или кварца.

Устройство фоторезистора с ф.ч.э из тонкой плёнки показано на рисунке.

Пояснения к рисункам: Ф – поток оптического излучения, h – ширина ф.ч.э., l – расстояние между электродами, d – толщина чувствительного слоя, Uсм – напряжение, приложенное к выводам фоторезистора.

Фоточувствительный элемент из тонкой плёнки создаётся химическим способом (пульверизация исходного материала из суспензии), либо формируется вакуумным напылением (физическая технология).

Электроды выполняют в виде проводящих плёнок методом напыления в вакууме из металлов, устойчивых к коррозии (золота, платины или серебра).

Устройство фоторезистора с ф.ч.э в виде пластинки из однородного полупроводникового материала.

Кристаллические фоточувствительные элементы вырезаются из слитка исходного полупроводникового материала (кремния, германия, антимонида индия) и имеют форму пластин, кубиков или параллелепипедов с размерами до нескольких миллиметров.

Также, как и для плёночных ф.ч.э, электроды выполняются из золота или других металлов, стойких к коррозии.

Для работы в условиях повышенной влажности и температуры применяются фоторезисторы, выполненные в герметичном корпусе из металла. Фоточувствительный элемент помещается в металлический корпус с окном, изготовленном из оптического материала (стекла, сапфира (лейкосапфира), плавленного или природного кварца, просветлённого германия или кремния).

Стоит отметить, что от оптических свойств материала, который используется для изготовления входного окна, зависят параметры фоторезистора. Оно может выполнять роль оптического фильтра и не пропускать, к примеру, видимое излучение, в то время, как для инфракрасного оно будет прозрачно.

На фото показан фоторезистор СФ2-8 выполненный в герметичном металлостеклянном корпусе.

Также можно встретить более простые конструкции фоторезисторов с корпусом из пластмассы. В таком варианте для защиты фоточувствительного слоя от воздействия влаги и воздуха его поверхность покрывается слоем лака.

Лак обладает прозрачностью в той области спектра, для работы в которой предназначен фоторезистор.

Читайте также:
Стратегия ремонта в ванной комнате перед началом работ

Далее показан фоторезистор ФСК-2, выполненный в корпусе из пластмассы с жёсткими штыревыми выводами для установки в октальную панель (РШ5-1).

Чаще всего в бытовой электронике можно встретить импортные фоторезисторы серий GM, GL, PGM (например, GM5528, GL5516, PGM5539), а также изделия серии VT900 (VT93N1 и подобные). По своему внешнему виду они все очень похожи и имеют одинаковую конструкцию, но разный диаметр подложки-основания.

Предназначены для работы в видимом спектре излучения, а чувствительный слой изготовлен из сульфида или селенида кадмия (имеет оранжевато-красный цвет).

Поскольку эти фоторезисторы не имеют внешнего корпуса, то их можно причислить к бескорпусным. Монтируются такие фоторезисторы на печатную плату, а защитой от внешних воздействий служит сам корпус прибора.

Рассмотрим конструкцию такого фоторезистора на примере импортного изделия серии GM125**.

На керамическую подложку (ceramic substrate) нанесена тонкая плёнка из сульфида кадмия (CdS). Это фоточувствительный слой. Его сопротивление меняется под воздействием излучения видимого спектра.

Методом испарения в вакууме на поверхность фоточувствительного слоя напыляется проводящий слой (металлизация). Затем в нём формируется зазор в виде изогнутой линии – “змейки”. Зазор разделяет металлизацию на два контактных слоя, к которым прикрепляются жёсткие выводы под пайку, а также через него проникает световой поток.

Такое исполнение, когда слой металлизации находится поверх фоточувствительного, создаёт надёжный контакт между ними, а форма выреза в виде “змейки” обеспечивает хорошую засветку фоточувствительного материала.

Для защиты от внешнего воздействия вся конструкция покрывается прозрачным защитным составом из эпоксидной смолы (epoxy resin).

Стоит отметить, что кроме фоторезисторов, способных работать при температуре окружающего воздуха, существуют ещё и охлаждаемые фоторезисторы.

Принцип работы фоторезистора

Принцип работы фоторезистора основан на таком явлении, как фотопроводимость (фоторезистивный эффект), которое относится к внутреннему фотоэффекту, то есть изменению электропроводности вещества при воздействии на него электромагнитного излучения.

Основой любого фоторезистора служит полупроводник. Под воздействием электромагнитного излучения (видимого света или инфракрасного) в веществе полупроводника возрастает количество носителей тока. Поэтому, в результате освещения полупроводника его сопротивление падает, а при затемнении, наоборот, растёт.

Наглядно увидеть изменение сопротивления фоторезистора можно при помощи мультиметра.

Подключаем выводы фоторезистора к щупам мультиметра, включенного в режим омметра.

Световое сопротивление фоторезисторов серии GM (GM35**, GM45**, GM55**, GM75**, GM125**, GM205**, GM255**) лежит в интервале 5. 200 кОм (в зависимости от конкретного изделия) при освещённости в 10 люкс (lux). Поэтому предел измерения можно выставить в несколько килоом (2k, 20k или 200k).

На фото показано сопротивление импортного фоторезистора GM55** (предположительно GM5516, он же GL5516) в освещённом состоянии. Как видим, оно составляет 1,1 килоОм.

Если фоторезистор накрыть тёмной тканью или просто прикрыть ладонью, то его сопротивление резко увеличится. При этом, чтобы увидеть результат измерения, скорее всего, придётся переключить предел измерения на мультиметре в сторону больших пределов, как правило, мегаомных.

При затемнении сопротивление нашего фоторезистора увеличилось до 121 килоОма.

Стоит понимать, что фоторезисторы изготавливают из полупроводников имеющих один тип проводимости, поэтому никаких p-n переходов в своей структуре они не имеют. Благодаря этому фоторезистор неполярен и может включаться в схему без её соблюдения, в отличие, например, от фотодиода или фототранзистора.

Материалы чувствительного слоя фоторезисторов

Фоторезисторы изготавливаются на основе полупроводников, обладающих как собственной, так и примесной фотопроводимостью.

Полупроводниками с собственной фотопроводимостью являются соединения на основе свинца (PbS – сульфид свинца, PbSe – селенид свинца, PbTe – теллурид свинца) и индия (InAs – арсенид индия, InSb – антимонид индия).

К полупроводникам с примесной фотопроводимостью относят германий и кремний, легированные примесями таких элементов, как золото (Ge : Au), цинк (Ge : Zn), кадмий (Ge : Cd), медь (Ge : Cu), ртуть (Ge : Hg), бор (Si : B), селен (Si : Se), индий (Si : In).

Материалы на основе CdS и CdSe относят к полупроводникам как с собственной фотопроводимостью, так и примесной, поскольку в них может быть внесена примесь меди Cu или серебра Ag.

Каждый из материалов имеет свой диапазон спектральной чувствительности. Далее на графике показаны относительные характеристики спектральной чувствительности некоторых полупроводников.

Кроме того, на графике показаны характеристики полупроводников, применяемых в охлаждаемых фоторезисторах:

PbS (77°K), PbSe (77°K), InSb (77°K) при температуре -196,15°С (77°K – 273,15);

PbS (195°K) при температуре -78,15°С (195°K – 273,15).

Для работы в видимом для человеческого глаза спектре в основном применяются фоторезисторы с чувствительным слоем из сульфида (CdS) и селенида кадмия (CdSe).

CdS (Cadmium sulphide. Он же сернистый кадмий, сульфид кадмия) – это соединение является полупроводником. Имеет жёлтый цвет, но при добавлении селена (Se) цвет может меняться вплоть до красно-фиолетового;

CdSe (Cadmium selenide, селенистый кадмий, селенид кадмия) – является полупроводником. Его кристаллы имеют тёмно-красный цвет. Используется для изготовления фоторезисторов, солнечных батарей и фотодиодов, а также применяется в качестве активной среды в полупроводниковых лазерах.

Фоторезисторы на основе этих химических соединений чаще всего встречаются в бытовой электронной аппаратуре. Не удивительно, что чувствительный к излучению слой в таких фоторезисторах имеет оранжевато-красный цвет.

На рисунке показана спектральная характеристика импортных фоторезисторов серии GM, которые широко применяются в электронике.

Читайте также:
Японская крыша – эксклюзивный вариант кровли домов или беседок! Особенности, виды, технология монтажа своими руками

Пик чувствительности данных фоторезисторов приходится на излучение с длиной волны 540 (0,54 мкм) и 560 нм (0,56 мкм), что соответствует зелёному цвету.

Для работы в инфракрасном диапазоне длин волн, который невидим человеческому глазу, применяют фоторезисторы на основе соединений свинца (PbS, PbSe), индия (InSb), а также германий Ge и кремний Si, легированные примесями.

Далее изображён график спектральной чувствительности инфракрасных фотопроводящих детекторов серии PB45. Чувствительный элемент в них выполнен из селенида свинца PbSe.

Область спектральной чувствительности данных детекторов лежит в интервале от 1 до 4,7 микрометров (µm), а пик чувствительности приходится на излучение с длиной волны 4 микрометра.

Кроме перечисленных химических соединений и веществ в качестве чувствительного материала могут применятся и другие, например, сернистый висмут (BiS), арсенид индия (InAs), тройные соединения типа ртуть-кадмий-теллур (HgCdTe) и свинец-олово-теллур (PbSnTe), являющиеся твёрдыми растворами двух компонент (HgTe и CdTe, PbTe и SnTe).

Параметры фоторезисторов

Более подробно о параметрах и характеристиках фоторезисторов будет рассказано в отдельной статье. Здесь же разберём лишь несколько важных параметров, которые следует знать при подборе фоторезисторов, работающих при больших потоках излучения в видимом спектре.

RT – темновое сопротивление фоторезистора (Ом). Сопротивление фоторезистора, измеренное при отсутствии освещения при поданном на него рабочем напряжении.

В даташитах на импортные изделия указывается как Dark resistance (Ω). Величина темнового сопротивления фоторезисторов обычно составляет единицы-десятки мегаом;

RСВ – световое сопротивление фоторезистора (Ом). Сопротивление фоторезистора при его освещении (или инфракрасном облучении). В даташитах на импортные изделия указывается как Light resistance (Ω). Стоит отметить, что данный параметр указывается для определённого уровня освещённости фоторезистора, измеряемого в люксах (lux или lx). Как правило, для импортных фоторезисторов (типа PGM, GM, GL), которые работают в видимом спектре, это 10 люкс.

P или Pмаксдопустимая мощность рассеивания или максимальная мощность (Вт, чаще мВт). Мощность, которую может выдержать фоторезистор длительное время без необратимого изменения его основных параметров. Допустимая мощность указывается для определённой температуры окружающей среды, как правило, это 25°С.

В англоязычной документации мощность рассеивания носит название Power dissipation PD(W или mW). Стоит отметить, что при чрезмерном нагреве, что характерно при превышении допустимой мощности, фоточувствительный элемент фоторезистора ещё может работать, но его эксплуатационные характеристики сильно ухудшаются, обычно, необратимо.

Uр – рабочее напряжение (В). Постоянное напряжение, подаваемое на фоторезистор, при котором гарантируются его номинальные параметры при длительной эксплуатации в заданных условиях. Рабочее напряжение фоторезисторов может быть от нескольких вольт до сотен вольт.

В справочниках на импортные фоторезисторы обычно указывается величина максимального постоянного напряжения (Max Voltage, VDC), которое способен выдержать фоторезистор конкретной серии.

Понятное дело, что максимальное напряжение падает на сопротивлении фоторезистора в затемнённом состоянии, когда его сопротивление очень велико (до нескольких десятков мегаОм). Также не стоит забывать о том, что при понижении температуры темновое сопротивление фоторезистора растёт, что может привести к тому, что напряжение на нём превысит максимальное и фоторезистор выйдет из строя.

При увеличении напряжения, подаваемого на фоторезистор, световой ток, проходящий через него также возрастает. В связи с этим, увеличивается нагрев фоточувствительного элемента, поэтому рабочее напряжение связано с максимальной мощностью фоторезистора, а также ограничено напряжением пробоя.

Как правило, чем большие габариты имеет фоторезистор, тем он мощнее и тем большее напряжение он способен выдержать.

Стоит также знать, что рост температуры окружающей среды и, как следствие, температуры самого фоточувствительного элемента приводит к ухудшению основных фотоэлектрических параметров, например, снижению вольтовой чувствительности и ухудшению порога чувствительности.

На параметры фоторезисторов также сильно влияет и постоянная фоновая засветка. Как правило, она приводит к ухудшению фотоэлектрических параметров, особенно у фоторезисторов на основе CdS/CdSe, работающих при больших световых потоках.

К недостаткам фоторезисторов можно отнести их инерционность, а также необходимость эксплуатации некоторых изделий при очень низких температурах, что требует применения специальных микрохолодильников или охлаждающих резервуаров, где охлаждение осуществляется за счёт жидкостей или газов.

Применение фоторезисторов

Фоторезисторы, работающие в видимом спектре нашли широкое применение в системах фотоэлектрической автоматики (автоматических выключателях света, счётных устройствах, датчиках обрыва полотна, датчиках взлома и т.п.), а также устройствах экспонометрии (приборах, измеряющих освещённость или яркость объектов при съёмке). Их можно обнаружить, например, в старых фотоаппаратах – “мыльницах”.

Стоит отметить, что в современной электронике фоторезистор, в привычном понимании этого слова, встречается не так часто.

Как правило, они являются частью фотоприёмных устройств (ФПУ), в состав которых помимо фоточувствительного элемента (по-сути, фоторезистора) входит интегральный усилитель, схема автоматической регулировки усиления (АРУ), а также цепи питания.

Плюс ко всему этому может идти система охлаждения на элементах Пельтье, если фоточувствительный элемент охлаждаемый. Такие фотопроводящие детекторы (photoconductive detectors) выполнены в небольшом по размерам герметизированном корпусе.

Фоторезисторы и фотопроводящие детекторы, работающие в ИК-диапазоне применяются для обнаружения пламени (flame detection) или искры (spark detection), бесконтактного измерения температуры (non-contact temperature measurement), для мониторинга влажности (moisture monitoring), в медицинском оборудовании для обнаружения углекислого газа (medical CO2 detection), для недиспергирующего инфракрасного анализа газов (non-dispersive infrared gas analysis).

Фоторезистор принцип работы

Фоторезистор: определение, виды, как работает, преимущества и недостатки

Название фоторезистора представляет собой комбинацию слов: фотон (легкие частицы) и резистор.

Читайте также:
Что лучше положить на деревянный пол?

Фоторезистор — это тип резистора, сопротивление которого уменьшается при увеличении интенсивности света.

Другими словами, поток электрического тока через фоторезистор увеличивается, когда интенсивность света увеличивается.

Фоторезисторы также иногда называют LDR (светозависимым резистором), полупроводниковым фоторезистором, фотопроводником или фотоэлементом.

Фоторезистор меняет свое сопротивление только при воздействии света.

Как работает фоторезистор

Когда свет падает на фоторезистор, некоторые из валентных электронов поглощают энергию света и разрушают связь с атомами.

Валентные электроны, которые разрушают связь с атомами, называются свободными электронами.

Когда энергия света, приложенная к фоторезистору, сильно увеличивается, большое количество валентных электронов получает достаточно энергии от фотонов и разрушает связь с родительскими атомами.

Большое количество валентных электронов, которые нарушают связь с родительскими атомами, попадет в зону проводимости.

Электроны, присутствующие в зоне проводимости, не принадлежат ни одному атому.

Следовательно, они свободно перемещаются из одного места в другое.

Электроны, которые свободно перемещаются из одного места в другое, называются свободными электронами.

Когда валентный электрон покинул атом, в определенном месте атома, из которого вышел электрон, создается пустое место.

Это место называется дырой. Следовательно, свободные электроны и дырки генерируются в виде пар.

И свободные электроны, и дырки будут нести электрический ток.

Количество электрического тока, протекающего через фоторезистор, зависит от количества генерируемых носителей заряда (свободных электронов и дырок).

Когда энергия света, приложенная к фоторезистору, увеличивается, число носителей заряда, генерируемых в фоторезисторе, также увеличивается.

В результате электрический ток, протекающий через фоторезистор, увеличивается.

Увеличение электрического тока означает снижение сопротивления. Таким образом, сопротивление фоторезистора уменьшается, когда интенсивность приложенного света увеличивается.

Фоторезисторы делаются из полупроводника с высоким сопротивлением, такого как кремний или германий. Они также сделаны из других материалов, таких как сульфид кадмия или селенид кадмия.

При отсутствии света фоторезисторы действуют как материалы с высоким сопротивлением, тогда как при наличии света фоторезисторы действуют как материалы с низким сопротивлением.

Советуем вам посмотреть лучшее видео на тему фоторезистора, в котором вы узнаете очень подробно принцип работы фоторезистора:

Типы фоторезисторов

Фоторезисторы делятся на два типа в зависимости от материала, из которого они изготовлены:

  • Внутренний фотоэффект
  • Внешний фотоэффект

Фоторезистор с внутренним фотоэффектом

Собственные фоторезисторы изготавливаются из чистых полупроводниковых материалов, таких как кремний или германий. Внешняя оболочка любого атома способна содержать до восьми валентных электронов. Однако в кремнии или германии каждый атом состоит только из четырех валентных электронов. Эти четыре валентных электрона каждого атома образуют четыре ковалентных связей с соседними четырьмя атомами, чтобы полностью заполнить внешнюю оболочку. В результате ни один электрон не остается свободным.

Когда мы применяем световую энергию к фоторезистору с внутренним эффектом, только небольшое количество валентных электронов получает достаточно энергии и освобождается от родительского атома. Следовательно, генерируется небольшое количество носителей заряда. В результате через внутренний фоторезистор протекает только небольшой электрический ток.

Внутренние фоторезисторы менее чувствительны к свету, поэтому они не надежны для практического применения.

Фоторезистор с внешним фотоэффектом

Фоторезисторы с внешним фотоэффектом изготовлены из внешних полупроводниковых материалов. Рассмотрим пример внешнего фоторезистора, изготовленного из комбинации атомов кремния и примеси фосфора.

Каждый атом кремния состоит из четырех валентных электронов, а каждый атом фосфора состоит из пяти валентных электронов.

Четыре валентных электрона атома фосфора образуют четыре ковалентные связи с соседними четырьмя атомами кремния. Однако пятый валентный электрон атома фосфора не может образовывать ковалентную связь с атомом кремния, поскольку атом кремния имеет только четыре валентных электрона. Следовательно, пятый валентный электрон каждого атома фосфора освобождается от атома. Таким образом, каждый атом фосфора генерирует свободный электрон.

Свободный электрон, который генерируется, сталкивается с валентными электронами других атомов и делает их свободными. Аналогичным образом, один свободный электрон генерирует несколько свободных электронов. Следовательно, добавление небольшого количества примесных (фосфорных) атомов генерирует миллионы свободных электронов.

Во внешних фоторезисторах уже есть большое количество носителей заряда. Следовательно, обеспечение небольшого количества световой энергии генерирует еще большее количество носителей заряда. Таким образом, электрический ток быстро увеличивается.

Увеличение электрического тока означает снижение сопротивления. Сопротивление внешнего фоторезистора быстро уменьшается с небольшим увеличением приложенной световой энергии. Внешние фоторезисторы надежны для практического применения.

Символ фоторезистора на схеме

Символ американского стандарта и символ международного фоторезистора показаны на рисунке ниже.

Преимущества и недостатки фоторезистора

Преимущества фоторезистора

  • Маленький по размеру
  • Бюджетный
  • Легко переносить из одного места в другое.

Недостатки фоторезистора

  • Точность фоторезистора очень низкая.

Применение фоторезисторов

Фоторезисторы используются в уличных фонарях для контроля, когда свет должен включаться и когда свет должен выключаться. Когда окружающий свет падает на фоторезистор, он выключает уличный свет. Когда света нет, фоторезистор вызывает включение уличного освещения. Это уменьшает потери электроэнергии.

Они также используются в различных устройствах, таких как сигнальные устройства, солнечные уличные фонари, ночники и радиочасы.

Пример схемы датчика освещенности

Фоторезистор. Принцип работы, характеристики

Фоторезистор (фотосопротивление, LDR) – это резистор, электрическое сопротивление которого изменяется под влиянием световых лучей, падающих на светочувствительную поверхность и не зависит от приложенного напряжения, как у обычного резистора.

Фоторезисторы чаще всего используются для определения наличия или отсутствия света или для измерения интенсивности света. В темноте, их сопротивление очень высокое, иногда доходит до 1 МОм, но когда датчик LDR подвергается воздействию света, его сопротивление резко падает, вплоть до нескольких десятков ом в зависимости от интенсивности света.

Читайте также:
Топ 7 лучших решений для маленькой детской комнаты: фото, идеи

Фоторезисторы имеют чувствительность, которая изменяется с длиной волны света. Они используются во многих устройствах, хотя уступают по своей популярности фотодиодам и фототранзисторам. Некоторые страны запретили LDR из-за содержащегося в них свинца или кадмия по соображению экологической безопасности.

Определение: Фоторезистор — светочувствительный элемент, чье сопротивление уменьшается при интенсивном освещении и увеличивается при его отсутствии.

Характеристики фоторезистора

Виды фоторезисторов и принцип работы

На основании материалов, используемых при производстве, фоторезисторы могут быть разделены на две группы: с внутренним и внешним фотоэффектом. В производстве фоторезисторов с внутренним фотоэффектом используют нелегированные материалы, такие как кремний или германий.

Фотоны, которые попадают на устройство, заставляют электроны перемещаться из валентной зоны в зону проводимости. В результате этого процесса появляется большое количество свободных электронов в материале, тем самым улучшается электропроводность и, следовательно, уменьшается сопротивление.

Фоторезисторы с внешним фотоэффектом производятся из материалов, с добавлением примеси, называемой легирующая добавка. Легирующая добавка создает новую энергетическую зону поверх существующей валентной зоной, заселенную электронами. Этим электронам требуется меньше энергии, чтобы совершить переход в зону проводимости благодаря меньшей энергетической щели. Результат этого – фоторезистор чувствителен к различным длинам волн света.

Несмотря на все это, оба типа демонстрируют уменьшение сопротивления при освещении. Чем выше интенсивность света, тем больше падает сопротивление. Следовательно, сопротивлением фоторезистора является обратная, нелинейная функция интенсивности света.

Фоторезистор на схемах обозначается следующим образом:

Чувствительность фоторезистора от длины волны

Чувствительность фоторезистора зависит от длины волны света. Если длина волны находится вне рабочего диапазона, то свет не будет оказывать никакого действия на LDR. Можно сказать, что LDR не чувствителен в этом диапазоне длин волн света.

Различные материалы имеют различные уникальные спектральные кривые отклика волны по сравнению с чувствительностью. Внешне светозависимые резисторы, как правило, предназначены для больших длин волн, с тенденцией в сторону инфракрасного (ИК). При работе в ИК-диапазоне, необходимо соблюдать осторожность, чтобы избежать перегрева, который может повлиять на измерения из-за изменения сопротивления фоторезистора от теплового эффекта.

На следующем рисунке показана спектральная характеристика фотопроводящих детекторов, изготовленные из различных материалов.

Чувствительность фоторезистора

Фотрезисторы имеют более низкую чувствительность, чем фотодиоды и фототранзисторы. Фотодиоды и фототранзисторы — полупроводниковые устройства, в которых используется свет для управления потоком электронов и дырок через PN-переход, а фоторезисторы лишеные этого PN-перехода.

Если интенсивность светового потока находится на стабильном уровне, то сопротивление по-прежнему может существенно изменяться вследствие изменения температуры, поскольку LDR также чувствительны и к изменениям температуры. Это качество фоторезистора делает его непригодным для точного измерения интенсивности света.

Инертность фоторезистора

Еще одно интересное свойство фоторезистора заключается в том, что существует инертность (время задержки) между изменениями в освещении и изменением сопротивления.

Для того чтобы сопротивление упало до минимума при полном освещении необходимо около 10 мс времени, и около 1 секунды для того, чтобы сопротивление фоторезистора возросло до максимума после его затемнения.

По этой причине LDR не может использоваться в устройствах, где необходимо учитывать резкие перепады освещения.

Конструкция и свойства фоторезистора

Впервые фотопроводимость была обнаружена у Селена, впоследствии были обнаружены и другие материалы с аналогичными свойствами. Современные фоторезисторы выполнены из сульфида свинца, селенида свинца, антимонида индия, но чаще всего из сульфида кадмия и селенида кадмия. Популярные LDR из сульфида кадмия обозначаются как CDS фоторезистор.

Для изготовления фоторезистора из сульфида кадмия, высокоочищенный порошок сульфида кадмия смешивают с инертными связующими материалами. Затем, эту смесь прессуют и спекают. В вакууме на основание с электродами наносят фоточувствительный слой в виде извилистой дорожки. Затем, основание помещается в стеклянную или пластиковую оболочку, для предотвращения загрязнения фоточувствительного элемента.

Спектральная кривая отклика сульфида кадмия совпадает с человеческим глазом. Длина волны пиковой чувствительности составляет около 560-600 нм, что соответствует видимой части спектра. Следует отметить, что устройства, содержащие свинец или кадмий не соответствуют RoHS и запрещены для использования в странах, которые придерживаются законов RoHS.

Примеры применения фоторезисторов

Фоторезисторы чаще всего используются в качестве датчиков света, когда требуется определить наличие или отсутствие света или зафиксировать интенсивность света. Примерами являются автоматы включения уличного освещения и фотоэкспонометры. В качестве примера использования фоторезистора, приведем схему фотореле для уличного освещения.

Фотореле для уличного освещения

Данная схема фотореле автоматически включает уличное освещение, когда наступает ночь и выключает когда светлеет. На самом деле вы можете использовать данную схему для реализации любого типа автоматического включения ночного освещения.

При освещении фоторезистора (R1), его сопротивление уменьшается, падение напряжения на переменном резисторе R2 будет высоким, вследствие чего транзистор VT1 открывается. Коллектор VT1 (BC107) соединен с базой транзистора VT2 (SL100). Транзистор VT2 закрыт и реле обесточено. Когда наступает ночь, сопротивление LDR увеличивается, напряжение на переменном резисторе R2, падает, транзистор VT1 закрывается. В свою очередь, транзистор VT2 открывается и подает напряжение на реле, которое включает лампу.

Что такое фоторезистор, его устройство и принцип работы

У полупроводниковых материалов есть много интересных свойств. Одно из них – изменение сопротивления под действием света. Электрическое сопротивление полупроводниковых элементов используется в приборах под названием фоторезистор. Управление внутренним сопротивлением полупроводниковых приборов с помощью световых потоков широко применялось в устаревших конструкциях, реже в современной электротехнике.

Читайте также:
Установка и подключение одноклавишных выключателей

Полупроводниковый резистор может изменять параметры электрического тока в зависимости от интенсивности освещения. Это свойство часто используют на практике для создания устройств, управляемых потоком излучения.Сегодня промышленность поставляет на рынок фоторезисторы с различными характеристиками, а это значит, что они еще находят применение в современных электротехнических устройствах.

Что такое фоторезистор?

Остановимся более подробно на описании полупроводникового фоторезистора. Для начала дадим ему определение.

Фоторезистор — это полупроводниковый прибор (датчик), который при облучении светом изменяет (уменьшает) свое внутреннее сопротивление.

В отличие от фотоэлементов других типов (фотодиодов и фототранзисторов) данный прибор не имеет p-n перехода. Это значит, что фоторезистор может проводить ток независимо от его направления и может работать не только в цепях постоянного тока, где присутствует постоянное напряжение, но и с переменными токами.

Устройство

Конструкция разных моделей фоторезисторов может отличаться по форме материалу корпуса. Но в основе каждого такого прибора лежит подложка, чаще всего керамическая, покрытая слоем полупроводникового материала. Поверх этого полупроводника наносятся змейкой тонкий слой золота, платины или другого коррозиестойкого металла. (см. рис. 1). Слои наносятся методом напыления.

Рис. 1. Устройство фоторезисторов

Напиленные слои соединяют с электродами, на которые поступает электрический ток. Всю эту конструкцию часто покрывают прозрачным пластиком и помещают в корпус с окошком для попадания световых лучей (см. рис. 2).

Рис. 2. Конструкция фоторезистора

Форма корпуса, его размеры и материал зависит от модели фоторезистора, определяемой технологией производителя. Примеры моделей показаны на рисунках 3 и 4.

Рис. 3. Датчик на основе фоторезистора Рис. 4. Фотоприемник

Сегодня в продаже можно увидеть детали в металлическом корпусе, часто в пластике или модели открытого типа. Некоторые модели изготавливают без метода напыления, а вырезают тонкий резистивный слой непосредственно из полупроводника. Существуют также технологии изготовления пленочных фотодатчиков (см. рис. 5).

Рис. 5. Конструкция пленочного фоторезистора

Для напыления слоя полупроводника используют различные фоторезистивные материалы. Для фиксации видимого спектра света применяют селенид кадмия и сульфид кадмия.

Более широкий спектр материалов восприимчив к инфракрасному излучению:

  • германий чистый либо легированный примесями золота, меди, цинка;
  • кремний;
  • сульфид свинца и другие химические соединения на его основе;
  • антимонид или арсенид индия;
  • прочие химические соединения чувствительные к инфракрасным лучам.

Чистый германий или кремний применяют при изготовлении фоторезисторов с внутренним фотоэффектом, а вещества легированные примесями – для конструкций с внешним фотоэффектом. Независимо от вида применяемого фоторезистивного материала, оба типа фоторезисторов обладают одинаковыми свойствами – обратной, нелинейной зависимостью сопротивления от силы светового потока.

Принцип работы

В неактивном состоянии полупроводник проявляет свойства диэлектрика. Для того, чтобы он проводил ток, необходимо воздействие на вещество внешнего стимулятора. Таким стимулятором может быть термическое воздействие или световое.

Под действием фотонов света полупроводник насыщается электронами, в результате чего он становится способным проводить электрический ток. Чем больше электронов образуется, тем меньшее сопротивление току оказывает полупроводниковый материал. Зависимость силы тока от освещения иллюстрирует график на рис. 6.

Рис. 6. График зависимости силы тока от освещения

На этом принципе базируется работа фоторезисторов. Образованию электронов способствует как видимый спектр света так и не видимый. Причем фоторезистор более чувствителен к инфракрасным лучам, имеющим большую энергию. Низкую чувствительность к видимому свету проявляют чистые материалы.

Для повышения чувствительности фоторезистивного слоя его легируют разными добавками, которые образуют обновленную внешнюю зону, расположенную поверх валентной зоны полупроводника. Такое внешнее насыщение электронами потребует меньше энергии для перехода в состояние насыщения фототоком проводимости. Возникает внешний фотоэффект, стимулированный видимым спектром излучения.

Путем подбора легирующих добавок можно создавать фоторезисторы для работы в разных спектральных диапазонах. Фоторезистор имеет спектральную чувствительность. Если длина световых волн находится вне зоны проводимости, то прибор перестает реагировать на такие лучи. Освещенность в таких случаях, уже не может оказывать влияния на токопроводимость изделия.

Выбор спектральных характеристик зависит от условий эксплуатации изделия и решаемых задач. Если интенсивностей излучения не достаточно для стабильной работы устройства, его эффективность можно повысить путем подбора чувствительных элементов, с соответствующим полупроводниковым слоем.

Важно помнить, что инерционность фоторезисторов заметно выше чем у фотодиодов и фототранзисторов. Инерционность прибора имеет место потому, что для насыщения полупроводникового слоя требуется некоторое время. Поэтому датчик всегда подает сигнал с некоторым опозданием.

Обозначение на схеме

Отличить фоторезистор на схеме от обычного резистора достаточно просто. На значке фоторезистора присутствуют две стрелки, направленные в сторону прямоугольника. Эти стрелки символизируют поток света (см. рис. 7). На некоторых схемах символ резистора помещают внутри окружности, а на других обозначают прямоугольником без окружности. Но главное отличие – наличие стрелок.

Рис. 7. Фоторезистор на схеме

Несмотря на разнообразие фотодатчиков их можно разделить всего на два вида:

  1. Фоторезисторы с внутренним фотоэффектом;
  2. Датчики с внешним фотоэффектом.

Они отличаются лишь по технологии производства, а точнее, по составу фоторезистивного слоя. Первые – это фоторезисторы, в которых полупроводник изготавливается из чистых химических элементов, без примесей. Они малочувствительны к видимому свету, однако хорошо реагируют на тепловые лучи (инфракрасный свет).

Читайте также:
Устройство и ремонт циркуляционного насоса отопления своими руками, как разобрать?

Фоторезисторы с внешним эффектом содержат примеси, которыми легируют основной состав полупроводникового вещества. Спектр чувствительности у этих датчиков гораздо шире и перемещается в зону видимого спектра и даже в зону УФ излучения.

По принципу действия эти два вида фоторезисторов не отличаются. Их внутреннее сопротивление нелинейно уменьшается с ростом интенсивности светового потока в зоне чувствительности.

Технические характеристики

Какие критерии применять при выборе фоторезистора?

Первым делом обращайте внимание на спектральные характеристики. Если этот параметр вы неправильно выберете, то с большой долей вероятности устройство работать не будет или его функционирование будет нестабильным. Например, фоторезисторы с внутренним эффектом не будут реагировать на дневной свет. Если в качестве облучателя не планируется использовать ИК излучатель, то остановите свой выбор на втором типе приборов.

Другие важные характеристики:

  • интегральная чувствительность;
  • энергетическая характеристика (порог чувствительности);
  • инерционность.

Вольт-амперная характеристика показывает зависимость величины тока от приложенного напряжения. Графически такая характеристика изображается в виде гиперболы. Но если выполняется условие стабильности интенсивности освещения, то ест световой поток Ф = const, то зависимость силы тока от напряжения будет линейной, а график – прямой линией. (см. рис. 8 а).

Энергетическая характеристика показывает, как зависит сила тока от величины светового потока, при постоянном напряжении (см. рис. 8 б). На графике видно как изменяется энергетическая кривая: сначала она устремляется вверх, а при достижении какого-то предела плавно изменяет направление и почти параллельна оси светового потока. Объясняется это тем, что после насыщения полупроводникового элемента его сопротивление минимально и в дальнейшем не зависит от интенсивности света.

Рисунок 8. Характеристики фоторезистора

Что касается инерционности, то она в разной степени присутствует у всех типах датчиков. Если вам нужна молниеносная реакция на свет, то лучше используйте фотодиод.

Преимущества и недостатки

Сильными сторонами фоторезисторов оказывается их высокая надежность и низкая цена. Иногда полезным свойством бывает его вольтамперная характеристика, когда ток возрастает не молниеносно, а постепенно. Достоинством является низкий порог чувствительности.

К недостаткам можно отнести инерционность датчиков. Запаздывание сигнала понижает быстродействие устройств на базе терморезисторов, что часто бывает неприемлемым.

Применение

Благодаря низкому порогу чувствительности фоторезисторы часто используются для регистрации слабых потоков световых волн.

Это качество используется:

  • в сортировальных машинах;
  • в полиграфической промышленности для регистрации факта обрыва бумажной ленты;
  • в сельскохозяйственных машинах для контроля густоты высевания зерновых;
  • в световых реле для включения/отключения освещения, в фотоэкспонометрах и т. п.

В промышленной электронике фоторезисторы применяются для учета изделий, движущихся на ленте транспортера или падающих в емкость для хранения.

Сам по себе датчик не может производить расчёты, но его сигналы используются и обрабатываются микроконтроллерами, с последующими вычислениями. Сигналы фоторезистора воспринимаются как аналоговыми, так и цифровыми логическими схемами. Задержка сигнала на доли секунды в большинстве случаев не является препятствием для использования фоторезисторов.

На базе фоторезисторов производятся оптроны – приборы с собственным источником света, которым можно управлять. Пример схемы такого устройства показан на рис. 9.

Рис. 9. Схема оптрона

Несмотря на некоторые недостатки приборов, эра фоторезисторов видимо еще не закончилась.

Видео по теме


Фоторезистор — устройство, принцип работы, характеристики

Условное обозначение фоторезистора

Фоторези́стор — полупроводниковый прибор, изменяющий величину своего сопротивления при облучении светом. Не имеет p-n перехода, поэтому обладает одинаковой проводимостью независимо от направления протекания тока.

Явление изменения электрического сопротивления полупроводника, обусловленное непосредственным действием излучения, называют фоторезистивным эффектом, или внутренним фотоэлектрическим эффектом.

Что такое фоторезистор?

Остановимся более подробно на описании полупроводникового фоторезистора. Для начала дадим ему определение.

Фоторезистор — это полупроводниковый прибор (датчик), который при облучении светом изменяет (уменьшает) свое внутреннее сопротивление.

В отличие от фотоэлементов других типов (фотодиодов и фототранзисторов) данный прибор не имеет p-n перехода. Это значит, что фоторезистор может проводить ток независимо от его направления и может работать не только в цепях постоянного тока, где присутствует постоянное напряжение, но и с переменными токами.

Что такое фоторезистор

Фоторезистор представляет из себя полупроводниковый радиоэлемент, который меняет свое сопротивление в зависимости от освещения. Для видимого света (солнечный свет или свет от осветительных ламп) используют сульфид или селенид кадмия. Есть также фоторезисторы, которые регистрируют инфракрасное излучение. Их делают из германия с некоторыми примесями других веществ. Свойство менять свое сопротивление под воздействием света очень широко используется в электронике.

Устройство

Конструкция разных моделей фоторезисторов может отличаться по форме материалу корпуса. Но в основе каждого такого прибора лежит подложка, чаще всего керамическая, покрытая слоем полупроводникового материала. Поверх этого полупроводника наносятся змейкой тонкий слой золота, платины или другого коррозиестойкого металла. (см. рис. 1). Слои наносятся методом напыления.

Рис. 1. Устройство фоторезисторов

Напиленные слои соединяют с электродами, на которые поступает электрический ток. Всю эту конструкцию часто покрывают прозрачным пластиком и помещают в корпус с окошком для попадания световых лучей (см. рис. 2).

Рис. 2. Конструкция фоторезистора

Форма корпуса, его размеры и материал зависит от модели фоторезистора, определяемой технологией производителя. Примеры моделей показаны на рисунках 3 и 4.

Читайте также:
Фундамент для деревянного дома на глине

Рис. 3. Датчик на основе фоторезистора Рис. 4. Фотоприемник

Сегодня в продаже можно увидеть детали в металлическом корпусе, часто в пластике или модели открытого типа. Некоторые модели изготавливают без метода напыления, а вырезают тонкий резистивный слой непосредственно из полупроводника. Существуют также технологии изготовления пленочных фотодатчиков (см. рис. 5).

Рис. 5. Конструкция пленочного фоторезистора

Для напыления слоя полупроводника используют различные фоторезистивные материалы. Для фиксации видимого спектра света применяют селенид кадмия и сульфид кадмия.

Более широкий спектр материалов восприимчив к инфракрасному излучению:

  • германий чистый либо легированный примесями золота, меди, цинка;
  • кремний;
  • сульфид свинца и другие химические соединения на его основе;
  • антимонид или арсенид индия;
  • прочие химические соединения чувствительные к инфракрасным лучам.

Чистый германий или кремний применяют при изготовлении фоторезисторов с внутренним фотоэффектом, а вещества легированные примесями – для конструкций с внешним фотоэффектом. Независимо от вида применяемого фоторезистивного материала, оба типа фоторезисторов обладают одинаковыми свойствами – обратной, нелинейной зависимостью сопротивления от силы светового потока.

Внешний вид и обозначение на схеме

В основном фоторезисторы выглядят вот так

На схемах могут обозначаться так

Виды фоторезисторов и принцип работы

На основании материалов, используемых при производстве, фоторезисторы могут быть разделены на две группы: с внутренним и внешним фотоэффектом. В производстве фоторезисторов с внутренним фотоэффектом используют нелегированные материалы, такие как кремний или германий.

Фотоны, которые попадают на устройство, заставляют электроны перемещаться из валентной зоны в зону проводимости. В результате этого процесса появляется большое количество свободных электронов в материале, тем самым улучшается электропроводность и, следовательно, уменьшается сопротивление.

Цифровой мультиметр AN8009

Большой ЖК-дисплей с подсветкой, 9999 отсчетов, измерение TrueRMS…

Мультиметр — RICHMETERS RM101

Richmeters RM101 — удобный цифровой мультиметр с автоматическим изменен…

Мультиметр — MASTECH MY68

Измерение: напряжения, тока, сопротивления, емкости, частоты…

Фоторезисторы с внешним фотоэффектом производятся из материалов, с добавлением примеси, называемой легирующая добавка. Легирующая добавка создает новую энергетическую зону поверх существующей валентной зоной, заселенную электронами. Этим электронам требуется меньше энергии, чтобы совершить переход в зону проводимости благодаря меньшей энергетической щели. Результат этого – фоторезистор чувствителен к различным длинам волн света.

Несмотря на все это, оба типа демонстрируют уменьшение сопротивления при освещении. Чем выше интенсивность света, тем больше падает сопротивление. Следовательно, сопротивлением фоторезистора является обратная, нелинейная функция интенсивности света.

Фоторезистор на схемах обозначается следующим образом:

Основные параметры отечественных фоторезисторов

Тип
ФР
Uраб,
В
Rт,
ом.
Iт,
мка
Iсв,
мка
dI=Iсв-Iт,
мка
Rт/Rсв
Удельная
чувств.,
мка/лм-в
Интегр.
чувств., а/лм
Мощность
рассеяния, Вт
1 2 3 4 5 6 7 8 9 10
ФСА-0 4-100 40*103-106 1,2 500 0,01
ФСА-1 4-100 40*103-106 1,2 500 0,01
ФСА-Г1 4-40 47*103-470*103 1,2 500 0,01
ФСА-Г2 4-40 40*103-106 1,2 500 0,01
ФСА-6 5-30 50-300*103 1,2 500 0,01
ФСК-0 50 5*106 10 2000 1990 200 7000 1,4 0,125
ФСК-1 50 5*106 10 2000 1990 200 7000 1,4 0,125
ФСК-2 100 10*106 10 800 790 80 1500 0,125
ФСК-4 50 5*106 10 2000 1990 200 7000 1,4 0,125
ФСК-5 50 5*106 10 1000 1990 100 6000 1,2 0,05
ФСК-6 50 3,3*106 15 2000 1885 9000 1,8 0,2
ФСК-7а 50 106 50 350 300 1500 0,35
ФСК-7б 50 105 50 800 750 6000 1,2 0,35
ФСК-Г7 50 5*106 10 2000 1990 200 3500 0,7 0,35
ФСК-Г1 50 5*106 10 1500 1490 150 6000 1,2 0,12
ФСК-Г2 50 5*106 10 4000 3990 400 12000 2,4 0,2
ФСК-П1 100 1010 0,01 1000-2000 1000-2000 4000 0,1
СФ2-1 15 30*106 0,5 1000 1000 2000 400000 0,01
СФ2-2 2(10) 4*106 0,5 1500 1500 3000 75000 0,05
СФ2-4 15 1,0 >750 0,01
СФ2-9 25 >3,3*106 240-900 0,125
СФ2-12 15 >15*106 200-1200 0,01
ФСД-0 20 20*108 1 2000 2000 2000 40000 0,05
ФСД-1 20 20*106 1 2000 2000 2000 40000 0,05
ФСД-Г1 20 20*106 1 2000 2000 2000 40000 0,05
СФ3-1 15 15*108 0.01 1500 1500 150000 600000 0,01
СФ3-8 25 – сопротивление освещенного прибора;

– ток через затемненный прибор;

– максимально возможное рабочее напряжение

Тип

спектр приема, нм

Rт., МОм

Iт. мкА

Uр., В

Rт/Rс

габариты

При повышении температуры темновое сопротивление резисторов уменьшается.
Габаритные размеры даны для корпуса без учета длины выводов в виде диаметр х высота или высота х ширина х толщина.

Наибольшее распространение получили фоторезисторы, изготовленные из сернистого свинца, сернистого кадмия, селенистого кадмия. Название типа фоторезисторов слагается из букв и цифр, причем в старых обозначениях буквы А, К, Д обозначали тип использованного светочувствительного материала, в новом же обозначении эти буквы заменены цифрами. Буква, стоящая за дефисом, при старом обозначении, характеризовала конструктивное исполнение (Г-герметизированные, П-пленочные). В новой маркировке эти буквы также заменены цифрами. В таблице, ниже приведены наименования наиболее распространенных обозначений фоторезисторов.

Как работает фоторезистор

Давайте рассмотрим одного из представителя семейства фоторезисторов

На нем, как и во всех фотоэлементах, есть окошко, с помощью которого он “ловит” свет.

Сбоку можно прочитать его маркировку

Главным параметром фоторезистора является его темновое сопротивление. Темновое сопротивление фоторезистора — это его сопротивление при полном отсутствии падения света на него. Судя по справочнику, темновое сопротивление нашего подопечного 15х108 Ом или словами — 1,5 ГОм. Можно даже сказать — полнейший обрыв. Так ли это? Давайте глянем. Для этого я использую свою записную книжку и прячу там фоторезистор:

Даже в диапазоне 200 МОм мультиметр показал единичку. Это означает, что сопротивление фоторезистора далеко за 200 МОм.

Убираем нашего подопытного из книжки и включаем в комнате свет. Результат сразу же на лицо:

Теперь включаю свою настольную лампу. В комнате стало еще светлее. Смотрим на показания мультиметра:

Подношу фоторезистор вплотную к настольной лампе:

Делаем вывод: чем больше поток света попадает на фоторезистор, тем меньше его сопротивление.

Символ фоторезистора на схеме

Символ американского стандарта и символ международного фоторезистора показаны на рисунке ниже.

Чувствительность фоторезистора

Фотрезисторы имеют более низкую чувствительность, чем фотодиоды и фототранзисторы. Фотодиоды и фототранзисторы — полупроводниковые устройства, в которых используется свет для управления потоком электронов и дырок через PN-переход, а фоторезисторы лишеные этого PN-перехода.

Если интенсивность светового потока находиться на стабильном уровне, то сопротивление по-прежнему может существенно изменяться вследствие изменения температуры, поскольку LDR также чувствительны и к изменениям температуры. Это качество фоторезистора делает его непригодным для точного измерения интенсивности света.

ТИПОВЫЕ ОБОЗНАЧЕНИЯ ФОТОРЕЗИСТОРОВ

Вид фоторезисторов Старое обозначение Новое обозначение
Сернисто-свинцовые ФСА-0, ФСА-1, ФСА-6, ФСА-Г1, ФСА-Г2
Сернисто-кадмиевые ФСК-0, 1, 2, 4, 5, 6, 7, ФСК-Г1,
ФСК-Г2, ФС’Р;-Г7, ФСК-П1
СФ2-1, 2, 4, 9, 12
Селенисто-кадмиевые ФСД-0, ФСД-1, ФСД-Г1 СФ3-1, 8

Чувствительность фоторезисторов меняется (уменьшается) в первые 50 часов работы, оставаясь в дальнейшем практически постоянной в течение всего срока службы, измеряемого несколькими тысячами часов. Интервал рабочих температур для сернисто-кадмиевых фоторезисторов составляет от -60 до +85°С для селенисто-кадмиевых — от -60 до +40°С и для сернисто-свинцовых — от -60 до +70°С.

Несмотря на разнообразие фотодатчиков их можно разделить всего на два вида:

  1. Фоторезисторы с внутренним фотоэффектом;
  2. Датчики с внешним фотоэффектом.

Они отличаются лишь по технологии производства, а точнее, по составу фоторезистивного слоя. Первые – это фоторезисторы, в которых полупроводник изготавливается из чистых химических элементов, без примесей. Они малочувствительны к видимому свету, однако хорошо реагируют на тепловые лучи (инфракрасный свет).

Фоторезисторы с внешним эффектом содержат примеси, которыми легируют основной состав полупроводникового вещества. Спектр чувствительности у этих датчиков гораздо шире и перемещается в зону видимого спектра и даже в зону УФ излучения.

По принципу действия эти два вида фоторезисторов не отличаются. Их внутреннее сопротивление нелинейно уменьшается с ростом интенсивности светового потока в зоне чувствительности.

Инертность фоторезистора

Еще одно интересное свойство фоторезистора заключается в том, что существует инертность (время задержки) между изменениями в освещении и изменением сопротивления.

Для того чтобы сопротивление упало до минимума при полном освещении необходимо около 10 мс времени, и около 1 секунды для того, чтобы сопротивление фоторезистора возросло до максимума после его затемнения.

По этой причине LDR не может использоваться в устройствах, где необходимо учитывать резкие перепады освещения.

Практическое применение фоторезистора

Схема автоматического регулятора освещенности:

ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ

П О П У Л Я Р Н О Е:

  • Зарубежные аналоги микросхем

Чем заменить микросхему?

Часто возникает вопрос при ремонте радиоаппаратуры. Если не удается найти нужную микросхему, то можно заменить её аналогом по приведённой ниже таблице.

Цветовая маркировка светодиодных индикаторов

Цветовая маркировка светодиодных индикаторов.

О беспроводном модеме для передачи данных в ISM диапазонах

Беспроводной интеллектуальный модем для надежной передачи данных в ISM диапазонах (433 МГц, 868 МГц и 902 МГц)

Сегодня технологии высокочастотных схем развиваются стремительными темпами, появляются новые беспроводные системы. Большинство из них (системы беспроводной телефонии, Bluetooth и WLAN 802.11b и т.п.) работают также как и СВЧ печи, в нелицензируемом диапазоне СВЧ 2,4 ГГц.

Из-за насыщенного трафика в этом диапазоне и связанных с этим вопросов совместимости возрос интерес к диапазонам ISM (industrial, scientific, medical), расположенным на более низких частотах — 433 и 868 МГц в Европе, а так же от 902 до 928 МГц в США.

Основные характеристики фоторезисторов

Фоторезистор — это неполярный прибор, изменяющий своё сопротивление под действием источника света.

Принцип работы фоторезистора основан на эффекте фотопроводимости полупроводников. Затемненный прибор имеет максимальное сопротивление, при засветке оно уменьшается в 20…150 раз!

Фоторезисторы имеют высокую чувствительность к излучению в самом широком диапазоне — от инфракрасной до рентгеновской области спектра, сопротивление их может меняться на несколько
порядков. Фоторезисторам присущи высокая стабильность во времени, они имеют небольшие габариты и выпускаются на различные номиналы сопротивлений. Приборы оформлены в корпус с прозрачным окном и двумя выводами, полярность подключения значения не имеет.

Обозначение фоторезистора на схемах

Основные параметры отечественных фоторезисторов

Тип
ФР
Uраб,
В
Rт,
ом.
Iт,
мка
Iсв,
мка
dI=Iсв-Iт,
мка
Rт/Rсв
Удельная
чувств.,
мка/лм-в
Интегр.
чувств., а/лм
Мощность
рассеяния, Вт
1 2 3 4 5 6 7 8 9 10
ФСА-0 4-100 40*10 3 -10 6 1,2 500 0,01
ФСА-1 4-100 40*10 3 -10 6 1,2 500 0,01
ФСА-Г1 4-40 47*10 3 -470*10 3 1,2 500 0,01
ФСА-Г2 4-40 40*10 3 -10 6 1,2 500 0,01
ФСА-6 5-30 50-300*10 3 1,2 500 0,01
ФСК-0 50 5*10 6 10 2000 1990 200 7000 1,4 0,125
ФСК-1 50 5*10 6 10 2000 1990 200 7000 1,4 0,125
ФСК-2 100 10*10 6 10 800 790 80 1500 0,125
ФСК-4 50 5*10 6 10 2000 1990 200 7000 1,4 0,125
ФСК-5 50 5*10 6 10 1000 1990 100 6000 1,2 0,05
ФСК-6 50 3,3*10 6 15 2000 1885 9000 1,8 0,2
ФСК-7а 50 10 6 50 350 300 1500 0,35
ФСК-7б 50 10 5 50 800 750 6000 1,2 0,35
ФСК-Г7 50 5*10 6 10 2000 1990 200 3500 0,7 0,35
ФСК-Г1 50 5*10 6 10 1500 1490 150 6000 1,2 0,12
ФСК-Г2 50 5*10 6 10 4000 3990 400 12000 2,4 0,2
ФСК-П1 100 10 10 0,01 1000-2000 1000-2000 4000 0,1
СФ2-1 15 30*10 6 0,5 1000 1000 2000 400000 0,01
СФ2-2 2(10) 4*10 6 0,5 1500 1500 3000 75000 0,05
СФ2-4 15 1,0 >750 0,01
СФ2-9 25 >3,3*10 6 240-900 0,125
СФ2-12 15 >15*10 6 200-1200 0,01
ФСД-0 20 20*10 8 1 2000 2000 2000 40000 0,05
ФСД-1 20 20*10 6 1 2000 2000 2000 40000 0,05
ФСД-Г1 20 20*10 6 1 2000 2000 2000 40000 0,05
СФ3-1 15 15*10 8 0.01 1500 1500 150000 600000 0,01
СФ3-8 25 В таблице приведены средние значения, определенные (кроме Iт) при освещенности 200 лк.

Rт – сопротивление затемненного прибора;
Rс – сопротивление освещенного прибора;

При повышении температуры темновое сопротивление резисторов уменьшается.
Габаритные размеры даны для корпуса без учета длины выводов в виде диаметр х высота или высота х ширина х толщина.

Наибольшее распространение получили фоторезисторы, изготовленные из сернистого свинца, сернистого кадмия, селенистого кадмия. Название типа фоторезисторов слагается из букв и цифр, причем в старых обозначениях буквы А, К, Д обозначали тип использованного светочувствительного материала, в новом же обозначении эти буквы заменены цифрами. Буква, стоящая за дефисом, при старом обозначении, характеризовала конструктивное исполнение (Г-герметизированные, П-пленочные). В новой маркировке эти буквы также заменены цифрами. В таблице, ниже приведены наименования наиболее распространенных обозначений фоторезисторов.

ТИПОВЫЕ ОБОЗНАЧЕНИЯ ФОТОРЕЗИСТОРОВ

Вид фоторезисторов Старое обозначение Новое обозначение
Сернисто-свинцовые ФСА-0, ФСА-1, ФСА-6, ФСА-Г1, ФСА-Г2
Сернисто-кадмиевые ФСК-0, 1, 2, 4, 5, 6, 7, ФСК-Г1,
ФСК-Г2, ФС’Р;-Г7, ФСК-П1
СФ2-1, 2, 4, 9, 12
Селенисто-кадмиевые ФСД-0, ФСД-1, ФСД-Г1 СФ3-1, 8

Чувствительность фоторезисторов меняется (уменьшается) в первые 50 часов работы, оставаясь в дальнейшем практически постоянной в течение всего срока службы, измеряемого несколькими тысячами часов. Интервал рабочих температур для сернисто-кадмиевых фоторезисторов составляет от -60 до +85°С для селенисто-кадмиевых — от -60 до +40°С и для сернисто-свинцовых — от -60 до +70°С.

Конструкция фоторезистора

Впервые фотопроводимость была обнаружена у Селена, впоследствии были обнаружены и другие материалы с аналогичными свойствами. Современные фоторезисторы выполнены из сульфида свинца, селенида свинца, антимонида индия, но чаще всего из сульфида кадмия и селенида кадмия. Популярные LDR из сульфида кадмия обозначаются как CDS фоторезистор.

Спектральная кривая отклика сульфида кадмия совпадает с человеческим глазом. Длина волны пиковой чувствительности составляет около 560-600 нм, что соответствует видимой части спектра.

Область применения фоторезисторов

Основной областью применения фоторезисторов является автоматика, где они в некоторых случаях с успехом заменяют вакуумные и газонаполненные фотоэлементы. Обладая повышенной допустимой мощностью рассеивания по сравнению с некоторыми типами фотоэлементов, фоторезисторы позволяют создавать простые и надежные фотореле без усилителей тока. Такие фотореле незаменимы в устройствах для телеуправления, контроля и регулирования, в автоматах для разбраковки, при сортировке и счете готовой продукции, для контроля качества и готовности самых различных деталей.

Широко используются фоторезисторы в полиграфической промышленности при обнаружении обрывов бумажной ленты, контроле за количеством листов, подаваемых в печатную машину.

В измерительной технике фоторезисторы применяются для измерения высоких температур, для регулировки температуры в различных технологических процессах.

Контроль уровня жидкости и сыпучих тел, защита персонала от входа в опасные зоны, контроль за запыленностью и задымленностью самых различных объектов, автоматические выключатели уличного освещения и т.д.

Применение фоторезисторов можно так же встретить в детских игрушках. Это далеко не полный перечень областей применения фоторезисторов.

Практическое применение фоторезистора

Схема автоматического регулятора освещенности:

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: