Устройство и ремонт циркуляционного насоса отопления своими руками, как разобрать?

Механизм начал «капризничать»? Пора на ремонт: как разобрать циркуляционный насос отопления своими руками

Современные водяные системы отопления, не могут работать без оборудования, контролирующего правильный поток воды в трубах. С этой задачей, справляется циркуляционный насос, который перемещает теплоноситель по трубам.

В работе прибора, возникают неполадки, которые нужно своевременно устранять. Устранение неисправностей прибора, можно провести в домашних условиях, предварительно, произведя демонтаж и разборку. Об этом далее, поподробнее.

Виды циркуляционных насосов отопления и принцип работы

Циркуляционные помпы в коммунальных, или бытовых системах отопления, бывают двух видов: с сухим и мокрым ротором. Хоть по принципу работы они идентичны, первый вариант имеет КПД 70%.

Его, целесообразнее использовать в коммунальных и производственных помещениях. Такой прибор менее долговечен, сильнее перегревается.

Поэтому оснащён вентилятором и требует дополнительного технического обслуживания. Для бытовых целей используют с мокрым ротором, который проще в эксплуатации. Ведь его двигатель омывает холодная вода и без всяких дополнительных элементов, охлаждает его.

Принцип работы такого насоса, основывается на перекачке воды с одной точки в другую. На роторе устройства, имеется крыльчатка (колесо с полимерными лопастями), которая, вращаясь, подхватывает воду, поступающую во входное отверстие, разгоняет её (если применять в бытовых целях, скорость может достигать 2 м/с) и выталкивает в выходное отверстие. При этом динамику перемещения теплоносителя, можно регулировать с помощью переключателя, который расположен на корпусе помпы.

Важно! В домах с большим метражом, система отопления должна обеспечивать тёплую температуру во всех комнатах. Поэтому внедрить в систему оборудование, которое намного увеличит давление и, перемещая равномерно воду, прогреет все батареи, будет правильным решением.

Что проверить перед разборкой насоса для безопасности

Циркуляционный насос, способствует быстрому, равномерному отоплению и помогает сэкономить расход газа. Однако, длительное, или неправильное использование, приводит к неполадкам.

Впрочем, некоторые из них можно устранить самостоятельно. Прежде чем предпринимать какие-либо действия по демонтажу агрегата, стоит его проверить. Возможно, сбой в работе получится устранить на месте. Поэтому прежде необходимо:

  1. Проверить подачу электроэнергии к клеммам насоса. Если такая неисправность имеет место, электродвигатель будет только гудеть, и ротор не запустится.

Для устранения проблемы, проверяются места соединений контактов, а также целостность проводов.

  1. Проверить, не заклинил ли вал. Такое может произойти из-за загрязнителей, выпадающих в осадок, во время процесса дистилляции воды, который происходит, благодаря её циркуляции и нагреванию в отопительной системе. Лишние частицы оседают, в том числе и на роторном валу, что приводит к заклиниванию. Устраняется проблема с помощью отвёртки. Достаточно провернуть ею вал (место расположения шлица, торцевая часть механизма), и работа насоса должна возобновиться.

Если после удаления перечисленных выше неполадок, проблема останется, придётся произвести демонтаж насоса из магистрали. Однако прежде чем его разбирать, стоит проверить, можно ли это делать — есть виды, не подлежащие разборке.

Как разобрать и собрать своими руками

Для того чтобы разобрать устройство и по возможности устранить внутреннюю неисправность своими руками, следует произвести демонтаж. Это труда не составит.

Вначале устройство обесточивается, перекрывается байпас (обходная отопительная труба), если таковая имеется. Затем, откручиваются все запорные вентили, и насос извлекается.

После демонтажа, можно приступать к разборке насоса. Для этого следует:

  1. Открутить ключом 4 болта, с шестигранными головками, которыми прикручена нижняя и верхняя часть устройства. Если крепёжные элементы прикипели и не откручиваются, стоит воспользоваться размягчающим средством «жидкий ключ». После нанесения этого вещества на проблемные места, уже через 10—15 минут открутится любой болт.
  2. Снять верхнюю часть корпуса и извлечь ротор, находящийся в стакане статора. Между колесом ротора и стаканом, есть 4 дренажные отверстия. Нужно отвёрткой поддеть через них колесо и вытащить деталь. Если есть налёт, препятствующий извлечению, можно снова воспользоваться размягчающим средством.
  3. После извлечения ротора, провести диагностику, и по возможности устранить все неполадки, препятствующие нормальной работе насоса.

Неисправности внутри системы циркуляционного насоса, бывают различной степени тяжести, например: если при запуске через несколько секунд работа помпы прекращается, возможно, дело в длительной эксплуатации устройства. Со временем, образуется накипь, которая приводит к заклиниванию вращательных узлов и препятствуют вращению ротора. Поэтому разобрав насос, весь известковый налёт вычищается, а крепёжные стыки смазываются маслом.

В задней части насоса, обследуется полость улитки. Если она загрязнена, хорошенько всё почистить. Проверить резиновую прокладку на стыке задней и передней части корпуса насоса. Если она непригодна, заменить изношенный уплотнитель.

Фото 1. Схема внутреннего устройства циркуляционного насоса отопления. Указаны основные части механизма.

После того как будут устранены неполадки, ротор снова помещается в гильзу. Затем, кладётся резиновый уплотнитель, одевается задняя часть насоса (улитка), и закручивается крепёжными винтами. Ориентируясь по стрелке на корпусе, указывающей направление потока, насос присоединяется к трубе. Провода электропитания в правильном порядке, присоединяются к колодкам клемм, и прибор готов к работе.

Важно! Перед тем, как запускать насос, для предотвращения воздушной пробки, потихоньку открутите винт на передней части корпуса насоса, и спустите воздух. Когда из отверстия пойдёт вода, закрутите плотно винт назад.

Полезное видео

Ознакомьтесь с видео, в котором показана разборка циркуляционного насоса и перечислены возможные поломки.

Своевременная профилактика — залог долговечности

Устранить мелкие неисправности, мешающие работе циркуляционного насоса, можно самостоятельно в домашних условиях. Поэтому, чтобы небольшие неприятности не переросли в крупные — проводите чаще профилактику оборудования. При подозрительных звуках и сбоях в процессе вращения, разбирать, смазывать все вращательные элементы, чистить от накипи и других оседающих частиц. При таком подходе, насосное оборудование в отопительной системе, прослужит не один десяток лет, обеспечивая оптимальную температуру.

Читайте также:
Точечные светильники для подвесных потолков – какой выбрать? + видео

Биполярный транзистор

Автор: Владимир Васильев · Опубликовано 9 сентября 2015 · Обновлено 29 августа 2018

Приветствую вас дорогие друзья! Сегодня речь пойдет о биполярных транзисторах и информация будет полезна прежде всего новичкам. Так что, если вам интересно что такое транзистор, его принцип работы и вообще с чем его едят, то берем стул по удобнее и подходим поближе.

Продолжим, и у нас тут есть содержание, будет удобнее ориентироваться в статье 🙂

Виды транзисторов

Транзисторы бывают в основном двух видов: биполярные транзисторы и полевые транзисторы. Конечно можно было рассмотреть все виды транзисторов в одной статье, но мне не хочется варить кашу у вас в голове. Поэтому в этой статье мы рассмотрим исключительно биполярные транзисторы а о полевых транзисторах я расскажу в одной из следующих статей. Не будем все мешать в одну кучу а уделим внимание каждому, индивидуально.

Биполярный транзистор

Биполярный транзистор это потомок ламповых триодов, тех что стояли в телевизорах 20 -го века. Триоды ушли в небытие и уступили дорогу более функциональным собратьям — транзисторам, а точнее биполярным транзисторам.

Триоды за редким исключением применяют в аппаратуре для меломанов.

Биполярные транзисторы выглядеть могут так.

Как вы можете видеть биполярные транзисторы имеют три вывода и конструктивно они могут выглядеть совершенно по разному. Но на электрических схемах они выглядят простенько и всегда одинаково. И все это графическое великолепие, выглядит как-то так.

Это изображение транзисторов еще называют УГО (Условное графическое обозначение).

Причем биполярные транзисторы могут иметь различный тип проводимости. Есть транзисторы NPN типа и PNP типа.

Отличие n-p-n транзистора от p-n-p транзистора состоит лишь в том что является «переносчиком» электрического заряда (электроны или «дырки» ). Т.е. для p-n-p транзистора электроны перемещаются от эмиттера к коллектору и управляются базой. Для n-p-n транзистора электроны идут уже от коллектора к эмиттеру и управляются базой. В итоге приходим к тому, что для того чтобы в схеме заменить транзистор одного типа проводимости на другой достаточно изменить полярность приложенного напряжения. Или тупо поменять полярность источника питания.

У биполярных транзисторов есть три вывода: коллектор, эмиттер и база. Думаю, что по УГО будет сложно запутаться, а вот в реальном транзисторе запутаться проще простого.

Обычно где какой вывод определяют по справочнику, но можно просто прозвонить транзистор мультиметром. Выводы транзистора звонятся как два диода, соединенные в общей точке (в области базы транзистора).

Слева изображена картинка для транзистора p-n-p типа, при прозвонке создается ощущение (посредством показаний мультиметра ), что перед вами два диода которые соединены в одной точке своими катодами. Для транзистора n-p-n типа диоды в точке базы соединены своими анодами. Думаю после экспериментов с мультиметром будет более понятно.

Принцип работы биполярного транзистора

А сейчас мы попробуем разобраться как работает транзистор. Я не буду вдаваться в подробности внутреннего устройства транзисторов так как эта информация только запутывает. Лучше взгляните на этот рисунок.

Это изображение лучше всего объясняет принцип работы транзистора. На этом изображении человек посредством реостата управляет током коллектора. Он смотрит на ток базы, если ток базы растет то человек так же увеличивает ток коллектора с учетом коэффициента усиления транзистора h21Э. Если ток базы падает, то ток коллектора также будет снижаться — человек подкорректирует его посредством реостата.

Эта аналогия не имеет ничего общего с реальной работой транзистора, но она облегчает понимание принципов его работы.

Для транзисторов можно отметить правила, которые призваны помочь облегчить понимание. (Эти правила взяты из книги П. Хоровица У.Хилла «Искусство схемотехники»).

  1. Коллектор имеет более положительный потенциал , чем эмиттер
  2. Как я уже говорил цепи база — коллектор и база -эмиттер работают как диоды
  3. Каждый транзистор характеризуется предельными значениями, такими как ток коллектора, ток базы и напряжение коллектор-эмиттер.
  4. В том случае если правила 1-3 соблюдены то ток коллектора Iк прямо пропорционален току базы Iб. Такое соотношение можно записать в виде формулы.

Из этой формулы можно выразить основное свойство транзистора — небольшой ток базы управляет большим током коллектора.

-коэффициент усиления по току.

Его также обозначают как

Исходы из выше сказанного транзистор может работать в четырех режимах:

  1. Режим отсечки транзистора — в этом режиме переход база-эмиттер закрыт, такое может произойти когда напряжение база-эмиттер недостаточное. В результате ток базы отсутствует и следовательно ток коллектора тоже будет отсутствовать.
  2. Активный режим транзистора — это нормальный режим работы транзистора. В этом режиме напряжение база-эмиттер достаточное для того, чтобы переход база-эмиттер открылся. Ток базы достаточен и ток коллектора тоже имеется. Ток коллектора равняется току базы умноженному на коэффициент усиления.
  3. Режим насыщения транзистора — в этот режим транзистор переходит тогда, когда ток базы становится настолько большим, что мощности источника питания просто не хватает для дальнейшего увеличения тока коллектора. В этом режиме ток коллектора не может увеличиваться вслед за увеличением тока базы.
  4. Инверсный режим транзистора — этот режим используется крайне редко. В этом режиме коллектор и эмиттер транзистора меняют местами. В результате таких манипуляций коэффициент усиления транзистора очень сильно страдает. Транзистор изначально проектировался не для того, чтобы он работал в таком особенном режиме.

Для понимания того как работает транзистор нужно рассматривать конкретные схемные примеры, поэтому давайте рассмотрим некоторые из них.

Читайте также:
Что такое микатермический обогреватель

Транзистор в ключевом режиме

Транзистор в ключевом режиме это один из случаев транзисторных схем с общим эмиттером. Схема транзистора в ключевом режиме применяется очень часто. К этой транзисторной схеме прибегают к примеру когда нужно управлять мощной нагрузкой посредством микроконтроллера. Ножка контроллера не способна тянуть мощную нагрузку, а транзистор может. Получается контроллер управляет транзистором, а транзистор мощной нагрузкой. Ну а обо всем по порядку.

Основная суть этого режима заключается в том, что ток базы управляет током коллектора. Причем ток коллектора гораздо больше тока базы. Здесь невооруженным взглядом видно, что происходит усиление сигнала по току. Это усиление осуществляется за счет энергии источника питания.

На рисунке изображена схема работы транзистора в ключевом режиме.

Для транзисторных схем напряжения не играют большой роли, важны лишь токи. Поэтому, если отношение тока коллектора к току базы меньше коэффициента усиления транзистора то все окей.

В этом случае даже если к базе у нас приложено напряжение в 5 вольт а в цепи коллектора 500 вольт, то ничего страшного не произойдет, транзистор будет покорно переключать высоковольтную нагрузку.

Главное чтобы эти напряжения не превышали предельные значения для конкретного транзистора (задается в характеристиках транзистора).

Чтож, теперь давайте попробуем рассчитать значение базового резистора.

На сколько мы знаем, что значение тока это характеристика нагрузки.

Мы не знаем сопротивления лампочки, но мы знаем рабочий ток лампочки 100 мА. Чтобы транзистор открылся и обеспечил протекание такого тока, нужно подобрать соответствующий ток базы. Ток базы мы можем корректировать меняя номинал базового резистора.

Так как минимальное значение коэффициента усиления транзистора равно 10, то для открытия транзистора ток базы должен стать 10 мА.

Ток который нам нужен известен. Напряжение на базовом резисторе будет Такое значение напряжения на резисторе получилось из-зи того, что на переходе база-эмиттер высаживается 0,6В-0,7В и это надо не забывать учитывать.

В результате мы вполне можем найти сопротивление резистора

Осталось выбрать из ряда резисторов конкретное значение и дело в шляпе.

Теперь вы наверное думаете, что транзисторный ключ будет работать так как нужно? Что когда базовый резистор подключается к +5 В лампочка загорается, когда отключается -лампочка гаснет? Ответ может быть да а может и нет.

Все дело в том, что здесь есть небольшой нюанс.

Лампочка в том случае погаснет, когда потенциал резистора будет равен потенциалу земли. Если же резистор просто отключен от источника напряжения, то здесь не все так однозначно. Напряжение на базовом резисторе может возникнуть чудесным образом в результате наводок или еще какой потусторонней нечисти 🙂

Чтобы такого эффекта не происходило делают следующее. Между базой и эмиттером подключают еще один резистор Rбэ. Этот резистор выбирают номиналом как минимум в 10 раз больше базового резистора Rб (В нашем случае мы взяли резистор 4,3кОм).

Когда база подключена к какому-либо напряжению, то транзистор работает как надо, резистор Rбэ ему не мешает. На этот резистор расходуется лишь малая часть базового тока.

В случае, когда напряжение к базе не приложено, происходит подтяжка базы к потенциалу земли, что избавляет нас от всяческих наводок.

Вот в принципе мы разобрались с работой транзистора в ключевом режиме, причем как вы могли убедиться ключевой режим работы это своего рода усиление сигнала по напряжению. Ведь мы с помощью малого напряжения в 5В управляли напряжением в 12 В.

Эмиттерный повторитель

Эмиттерный повторитель является частным случаем транзисторных схем с общим коллектором.

Отличительной чертой схемы с общим коллектором от схемы с общим эмиттером (вариант с транзисторным ключем) является то, что эта схема не усиливает сигнал по напряжению. Что вошло через базу, то и вышло через эмиттер, с тем же самым напряжением.

Действительно допустим приложили к базе мы 10 вольт, при этом мы знаем что на переходе база-эмиттер высаживается где-то 0,6-0,7В. Выходит что на выходе (на эмиттере, на нагрузке Rн) будет напряжение базы минус 0,6В.

Получилось 9,4В, одним словом почти сколько вошло столько и вышло. Убедились, что по напряжению эта схема нам сигнал не увеличит.

«В чем же смысл тогда таком включении транзистора?»- спросите вы. А вот оказывается эта схема обладает другим очень важным свойством. Схема включения транзистора с общим коллектором усиливает сигнал по мощности. Мощность это произведение тока на напряжение, но так как напряжение не меняется то мощность увеличивается только за счет тока! Ток в нагрузке складывается из тока базы плюс ток коллектора. Но если сравнивать ток базы и ток коллектора то ток базы очень мал по сравнению с током коллектора. Получается ток нагрузки равен току коллектора. И в результате получилась вот такая формула.

Теперь я думаю понятно в чем суть схемы эмиттерного повторителя, только это еще не все.

Эмиттерный повторитель обладает еще одним очень ценным качеством — высоким входным сопротивлением. Это означает, что эта транзисторная схема почти не потребляет ток входного сигнала и не создает нагрузки для схемы -источника сигнала.

Для понимания принципа работы транзистора этих двух транзисторных схем будет вполне достаточно. А если вы еще поэкспериментируете с паяльником в руках то прозрение просто не заставит себя ждать, ведь теория теорией а практика и личный опыт ценнее в сотни раз!

Где транзисторы купить?

Как и все другие радиокомпоненты транзисторы можно купить в любом ближайшем магазине радиодеталей. Если вы живете где-нибудь на окраине и о подобных магазинах не слышали (как я раньше) то остается последний вариант — заказать транзисторы в интернет- магазине. Я сам частенько заказываю радиодетали через интернет-магазины ведь в обычном оффлайн магазине может чего-нибудь просто не оказаться.

Читайте также:
Топ 7 лучших решений для маленькой детской комнаты: фото, идеи

Впрочем если вы собираете устройство чисто для себя то можно не париться а добыть из старой, отслужившей свое техники и так сказать вдохнуть в старый радиокомпонет новую жизнь.

Чтож друзья, а на этом у меня все. Все, что планировал я сегодня вам рассказал. Если остались какие-либо вопросы, то задавайте их в комментариях, если вопросов нет то все равно пишите комментарии, мне всегда важно ваше мнение. Кстати не забывайте, что каждый кто впервые оставит комментарий получит подарок.

Также обязательно подпишитесь на новые статьи, потому что дальше вас ждет много интересного и полезного.

Желаю вам удачи, успехов и солнечного настроения!

Биполярные транзисторы: устройство, принцип и режимы работы, схема включения, применение, основные параметры

  • Информация
  • Сертификаты
  • Вопрос-ответ
  • Справочники
  • Информация
  • Сертификаты
  • Вопрос-ответ
  • Справочники

Биполярные транзисторы: устройство, принцип и режимы работы, схема включения, применение, основные параметры

Основной функцией биполярного транзистора (БТ) является увеличение мощности входного электрического сигнала. Эти полупроводниковые радиокомпоненты появились, как альтернатива электровакуумных триодов, и со временем практически вытеснили их из отрасли. Справедливости ради заметим, что лампы применяются и до сих пор, но в очень и очень узком сегменте аппаратуры специального назначения. В массовой же радиотехнике используются, в основном, транзисторы – биполярные и их ближайшие «родственники» полевые.

Ключевое преимущество этих элементов состоит в миниатюрности. Электровакуумный усилитель со схожими характеристиками оказывается в несколько раз крупнее биполярного транзистора. Вследствие этого применение БТ в радиоэлектронике приводит к существенному уменьшению габаритных размеров конечной радиотехнической продукции.

Биполярным данный транзистор называется из-за того, что в физических процессах, протекающих во время его функционирования, участвуют оба типа носителей заряда – и электроны, и дырки. Это оказывает влияние на принцип управления выходным сигналом. В биполярных транзисторах выходными параметрами управляет ток, а не электрическое поле, как в полевых (униполярных).

Устройство биполярного транзистора.

Этот полупроводниковый триод состоит из 3 частей – эмиттера, коллектора и базы. Таким образом, ключевыми элементами биполярного транзистора являются два p-n-перехода, а не один, как в полевых. Эмиттер исполняет функцию генератора носителей заряда, которые формируют рабочий ток, стекающий в приёмник – коллектор. База необходима для подачи управляющего напряжения.

Если рассматривать плоскую модель БТ, то радиокомпонент представляет собой две области с p- или n-проводимостью (эмиттер и коллектор), разделённые тонким слоем полупроводника с проводимостью обратного знака (база). Полупроводниковый кристалл со стороны коллектора физически крупнее. Такое соотношение обеспечивает правильную работу биполярного транзистора.

В зависимости от типа проводимости эмиттера, коллектора и базы различают PNP- и NPN-транзисторы. В принципе, они функционируют одинаково с той лишь разницей, что к ним прикладываются напряжения разной полярности. Выбор того или иного вида БТ определяется особенностями конкретных радиотехнических устройств.

Принцип работы биполярного транзистора.

При подключении эмиттера и коллектора к источнику питания создаются почти все условия для протекания тока. Однако свободному перемещению носителей заряда препятствует база, и для устранения этой помехи на неё подаётся напряжение смещения. В базовом слое полупроводника возникают физико-химические процессы электронно-дырочной рекомбинации, в результате которой через базу начинает течь небольшой ток. В результате p-n-переходы открывают путь потоку носителей заряда от эмиттера к коллектору.

Если ток, протекающий через базу, меняется по какому-то закону, то точно так же изменяется и мощный ток между эмиттером и коллектором. Следовательно, мы получаем на выходе биполярного транзистора такой же сигнал, как и на базе, но с более высокой мощностью. В этом и состоит усилительная функция биполярного транзистора.

Режимы работы.

Существует 4 режима, в одном из которых может работать биполярный транзистор. В этот список входят следующие:

  1. отсечка;
  2. активный режим;
  3. насыщение;
  4. барьерный режим.

Существует ещё так называемый инверсный режим, но он на практике не используется и интересен только при теоретических исследованиях поведения полупроводников. Поэтому опишем подробнее только четыре первых.

1. Отсечка.

В том случае, если разность потенциалов между эмиттером и базой ниже некоторого значения (примерно 0.6 Вольт), то база-эмиттерный p-n-переход оказывается закрытым, поскольку ток базы не возникает. В связи с этим коллекторный ток не протекает по той причине, что в базовом слое отсутствуют свободные электроны. Таким образом, транзистор переходит в состояние отсечки и сигнал не усиливает. Этот режим используется в цифровых схемах, когда БТ работает как ключ в положении «разомкнуто».

2. Активный режим.

В этом режиме радиокомпонент усиливает сигнал, то есть исполняет свою основную функцию. На базу подаётся разность потенциалов, которая открывает база-эмиттерный p-n-переход. Как следствие, в транзисторе начинают протекать токи коллектора и базы. Значение коллекторного тока вычисляется как арифметическое произведение величины тока базы и коэффициента усиления.

3. Насыщение.

В этот режим биполярный транзистор входит при увеличении тока базы до некоего предельного значения, при котором p-n-переходы полностью открываются. Значение тока, протекающего через БТ при его насыщении, зависит лишь от питающего напряжения и величины нагрузки в коллекторной цепи. В данном режиме входной сигнал не усиливается, ведь коллекторный ток не воспринимает изменений тока базы. Способность транзистора к переходу в насыщение используется в цифровой технике, когда БТ играет роль ключа в замкнутом положении.

4. Барьерный режим.

Здесь транзистор работает как диод с последовательно включённым резистором. Для этого базу напрямую или через малоомное сопротивление соединяют с коллектором. В данном режиме триоды хорошо показывают себя в высокочастотных устройствах. Кроме того, использование транзистора в барьерном режиме целесообразно на реальном производстве для снижения общего количества комплектующих.

Читайте также:
Учимся красиво складывать бумажные салфетки на праздничный стол по схемам

Схемы включения биполярных транзисторов.

Полупроводниковый триод может включаться в электрическую цепь по одной из трёх схем – с общим эмиттером, с общим коллектором и с общей базой. В зависимости от способа подключения различаются электрические параметры транзистора, что определяет выбор схемы в каждом конкретном случае.

При включении биполярного транзистора с общим эмиттером достигается максимальное усиление входного сигнала. Благодаря этому данная схема в усилительных каскадах применяется чаще всего.

Схема с общим коллектором по-другому называется эмиттерным повторителем. Это связано с тем, что разность потенциалов на коллекторе и эмиттере оказываются практически равными. При таком включении наблюдаются большое усиление по току, высокое входное сопротивление и совпадение фаз входного и выходного сигналов. Вследствие этого эмиттерные повторители используются в согласующих и буферных усилителях.

При включении БТ по схеме с общей базой отсутствует усиление по току, но значительным оказывается усиление по напряжению. Особенностью данного способа является малое влияние транзистора на сигналы высокой частоты. Это делает схему с общей базой предпочтительной для использования в устройствах СВЧ.

Основные параметры биполярных транзисторов:

  1. Максимально допустимый постоянный ток коллектора;
  2. Максимальное напряжение между коллектором и эмиттером при заданном токе коллектора и сопротивлении в цепи база-эмиттер;
  3. Максимальное напряжение между коллектором и эмиттером при заданном токе коллектора и токе базы, равным нулю;
  4. Максимальное напряжение коллектор-база при заданном токе коллектора и токе эмиттера, равным нулю;
  5. Максимально допустимое постоянное напряжение эмиттер-база при токе коллектора, равном нулю;
  6. Максимально допустимая постоянная мощность, рассеивающаяся на коллекторе;
  7. Статический коэффициент передачи тока;
  8. Напряжение насыщения между коллектором и эмиттером;
  9. Обратный ток коллектора. Ток через коллекторный переход при заданном обратном напряжении коллектор-база и разомкнутом выводе эмиттера;
  10. Обратный ток эмиттера. Ток через эмиттерный переход при заданном обратном напряжении эмиттер-база и разомкнутом выводе коллектора;
  11. Граничная частота коэффициента передачи тока;
  12. Коэффициент шума;
  13. Емкость коллекторного перехода;
  14. Максимально допустимая температура перехода.

Биполярные транзисторы. For dummies

Предисловие

Поскольку тема транзисторов весьма и весьма обширна, то посвященных им статей будет две: отдельно о биполярных и отдельно о полевых транзисторах.

Транзистор, как и диод, основан на явлении p-n перехода. Желающие могут освежить в памяти физику протекающих в нем процессов здесь или здесь.

Необходимые пояснения даны, переходим к сути.

Транзисторы. Определение и история

Транзистор — электронный полупроводниковый прибор, в котором ток в цепи двух электродов управляется третьим электродом. (tranzistors.ru)

Первыми были изобретены полевые транзисторы (1928 год), а биполярные появилсь в 1947 году в лаборатории Bell Labs. И это была, без преувеличения, революция в электронике.

Очень быстро транзисторы заменили вакуумные лампы в различных электронных устройствах. В связи с этим возросла надежность таких устройств и намного уменьшились их размеры. И по сей день, насколько бы «навороченной» не была микросхема, она все равно содержит в себе множество транзисторов (а также диодов, конденсаторов, резисторов и проч.). Только очень маленьких.

Кстати, изначально «транзисторами» называли резисторы, сопротивление которых можно было изменять с помощью величины подаваемого напряжения. Если отвлечься от физики процессов, то современный транзистор тоже можно представить как сопротивление, зависящее от подаваемого на него сигнала.

В чем же отличие между полевыми и биполярными транзисторами? Ответ заложен в самих их названиях. В биполярном транзисторе в переносе заряда участвуют и электроны, и дырки («бис» — дважды). А в полевом (он же униполярный) — или электроны, или дырки.

Также эти типы транзисторов разнятся по областям применения. Биполярные используются в основном в аналоговой технике, а полевые — в цифровой.

И, напоследок: основная область применения любых транзисторов — усиление слабого сигнала за счет дополнительного источника питания.

Биполярный транзистор. Принцип работы. Основные характеристики


Биполярный транзистор состоит из трех областей: эмиттера, базы и коллектора, на каждую из которых подается напряжение. В зависимости от типа проводимости этих областей, выделяют n-p-n и p-n-p транзисторы. Обычно область коллектора шире, чем эмиттера. Базу изготавливают из слаболегированного полупроводника (из-за чего она имеет большое сопротивление) и делают очень тонкой. Поскольку площадь контакта эмиттер-база получается значительно меньше площади контакта база-коллектор, то поменять эмиттер и коллектор местами с помощью смены полярности подключения нельзя. Таким образом, транзистор относится к несимметричным устройствам.

Прежде, чем рассматривать физику работы транзистора, обрисуем общую задачу.

Она заключаются в следующем: между эмиттером и коллектором течет сильный ток (ток коллектора), а между эмиттером и базой — слабый управляющий ток (ток базы). Ток коллектора будет меняться в зависимости от изменения тока базы. Почему?
Рассмотрим p-n переходы транзистора. Их два: эмиттер-база (ЭБ) и база-коллектор (БК). В активном режиме работы транзистора первый из них подключается с прямым, а второй — с обратным смещениями. Что же при этом происходит на p-n переходах? Для большей определенности будем рассматривать n-p-n транзистор. Для p-n-p все аналогично, только слово «электроны» нужно заменить на «дырки».

Поскольку переход ЭБ открыт, то электроны легко «перебегают» в базу. Там они частично рекомбинируют с дырками, но большая их часть из-за малой толщины базы и ее слабой легированности успевает добежать до перехода база-коллектор. Который, как мы помним, включен с обратным смещением. А поскольку в базе электроны — неосновные носители заряда, то электирическое поле перехода помогает им преодолеть его. Таким образом, ток коллетора получается лишь немного меньше тока эмиттера. А теперь следите за руками. Если увеличить ток базы, то переход ЭБ откроется сильнее, и между эмиттером и коллектором сможет проскочить больше электронов. А поскольку ток коллектора изначально больше тока базы, то это изменение будет весьма и весьма заметно. Таким образом, произойдет усиление слабого сигнала, поступившего на базу. Еще раз: сильное изменение тока коллектора является пропорциональным отражением слабого изменения тока базы.

Читайте также:
Соединение воздуховодов между собой: как соединить круглые вентиляционные трубы с прямоугольными

Помню, моей одногрупнице принцип работы биполярного транзистора объясняли на примере водопроводного крана. Вода в нем — ток коллектора, а управляющий ток базы — то, насколько мы поворачиваем ручку. Достаточно небольшого усилия (управляющего воздействия), чтобы поток воды из крана увеличился.

Помимо рассмотренных процессов, на p-n переходах транзистора может происходить еще ряд явлений. Например, при сильном увеличении напряжения на переходе база-коллектор может начаться лавинное размножение заряда из-за ударной ионизации. А вкупе с туннельным эффектом это даст сначала электрический, а затем (с возрастанием тока) и тепловой пробой. Однако, тепловой пробой в транзисторе может наступить и без электрического (т.е. без повышения коллекторного напряжения до пробивного). Для этого будет достаточно одного чрезмерного тока через коллектор.

Еще одно явления связано с тем, что при изменении напряжений на коллекторном и эмиттерном переходах меняется их толщина. И если база черезчур тонкая, то может возникнуть эффект смыкания (так называемый «прокол» базы) — соединение коллекторного перехода с эмиттерным. При этом область базы исчезает, и транзистор перестает нормально работать.

Коллекторный ток транзистора в нормальном активном режиме работы транзистора больше тока базы в определенное число раз. Это число называется коэффициентом усиления по току и является одним из основных параметров транзистора. Обозначается оно h21. Если транзистор включается без нагрузки на коллектор, то при постоянном напряжении коллектор-эмиттер отношение тока коллектора к току базы даст статический коэффициент усиления по току. Он может равняться десяткам или сотням единиц, но стоит учитывать тот факт, что в реальных схемах этот коэффициент меньше из-за того, что при включении нагрузки ток коллектора закономерно уменьшается.

Вторым немаловажным параметром является входное сопротивление транзистора. Согласно закону Ома, оно представляет собой отношение напряжения между базой и эмиттером к управляющему току базы. Чем оно больше, тем меньше ток базы и тем выше коэффициент усиления.

Третий параметр биполярного транзистора — коэффициент усиления по напряжению. Он равен отношению амплитудных или действующих значений выходного (эмиттер-коллектор) и входного (база-эмиттер) переменных напряжений. Поскольку первая величина обычно очень большая (единицы и десятки вольт), а вторая — очень маленькая (десятые доли вольт), то этот коэффициент может достигать десятков тысяч единиц. Стоит отметить, что каждый управляющий сигнал базы имеет свой коэффициент усиления по напряжению.

Также транзисторы имеют частотную характеристику, которая характеризует способность транзистора усиливать сигнал, частота которого приближается к граничной частоте усиления. Дело в том, что с увеличением частоты входного сигнала коэффициент усиления снижается. Это происходит из-за того, что время протекания основных физических процессов (время перемещения носителей от эмиттера к коллектору, заряд и разряд барьерных емкостных переходов) становится соизмеримым с периодом изменения входного сигнала. Т.е. транзистор просто не успевает реагировать на изменения входного сигнала и в какой-то момент просто перестает его усиливать. Частота, на которой это происходит, и называется граничной.

Также параметрами биполярного транзистора являются:

  • обратный ток коллектор-эмиттер
  • время включения
  • обратный ток колектора
  • максимально допустимый ток

Условные обозначения n-p-n и p-n-p транзисторов отличаются только направлением стрелочки, обозначающей эмиттер. Она показывает то, как течет ток в данном транзисторе.

Режимы работы биполярного транзистора

Рассмотренный выше вариант представляет собой нормальный активный режим работы транзистора. Однако, есть еще несколько комбинаций открытости/закрытости p-n переходов, каждая из которых представляет отдельный режим работы транзистора.

  1. Инверсный активный режим. Здесь открыт переход БК, а ЭБ наоборот закрыт. Усилительные свойства в этом режиме, естественно, хуже некуда, поэтому транзисторы в этом режиме используются очень редко.
  2. Режим насыщения. Оба перехода открыты. Соответственно, основные носители заряда коллектора и эмиттера «бегут» в базу, где активно рекомбинируют с ее основными носителями. Из-за возникающей избыточности носителей заряда сопротивление базы и p-n переходов уменьшается. Поэтому цепь, содержащую транзистор в режиме насыщения можно считать короткозамкнутой, а сам этот радиоэлемент представлять в виде эквипотенциальной точки.
  3. Режим отсечки. Оба перехода транзистора закрыты, т.е. ток основных носителей заряда между эмиттером и коллектором прекращается. Потоки неосновных носителей заряда создают только малые и неуправляемые тепловые токи переходов. Из-за бедности базы и переходов носителями зарядов, их сопротивление сильно возрастает. Поэтому часто считают, что транзистор, работающий в режиме отсечки, представляет собой разрыв цепи.
  4. Барьерный режим В этом режиме база напрямую или через малое сопротивление замкнута с коллектором. Также в коллекторную или эмиттерную цепь включают резистор, который задает ток через транзистор. Таким образом получается эквивалент схемы диода с последовательно включенным сопротивлением. Этот режим очень полезный, так как позволяет схеме работать практически на любой частоте, в большом диапазоне температур и нетребователен к параметрам транзисторов.

Схемы включения биполярных транзисторов

Поскольку контактов у транзистора три, то в общем случае питание на него нужно подавать от двух источников, у которых вместе получается четыре вывода. Поэтому на один из контактов транзистора приходится подавать напряжение одинакового знака от обоих источников. И в зависимости от того, что это за контакт, различают три схемы включения биполярных транзисторов: с общим эмиттером (ОЭ), общим коллектором (ОК) и общей базой (ОБ). У каждой из них есть как достоинства, так и недостатки. Выбор между ними делается в зависимости от того, какие параметры для нас важны, а какими можно поступиться.

Читайте также:
Солнечная электростанция принцип работы
Схема включения с общим эмиттером


Эта схема дает наибольшее усиление по напряжению и току (а отсюда и по мощности — до десятков тысяч единиц), в связи с чем является наиболее распространенной. Здесь переход эмиттер-база включается прямо, а переход база-коллектор — обратно. А поскольку и на базу, и на коллектор подается напряжение одного знака, то схему можно запитать от одного источника. В этой схеме фаза выходного переменного напряжения меняется относительно фазы входного переменного напряжения на 180 градусов.

Но ко всем плюшкам схема с ОЭ имеет и существенный недостаток. Он заключается в том, что рост частоты и температуры приводит к значительному ухудшению усилительных свойств транзистора. Таким образом, если транзистор должен работать на высоких частотах, то лучше использовать другую схему включения. Например, с общей базой.

Схема включения с общей базой


Эта схема не дает значительного усиления сигнала, зато хороша на высоких частотах, поскольку позволяет более полно использовать частотную характеристику транзистора. Если один и тот же транзистор включить сначала по схеме с общим эмиттером, а потом с общей базой, то во втором случае будет наблюдаться значительное увеличение его граничной частоты усиления. Поскольку при таком подключении входное сопротивление низкое, а выходное — не очень большое, то собранные по схеме с ОБ каскады транзисторов применяют в антенных усилителях, где волновое сопротивление кабелей обычно не превышает 100 Ом.

В схеме с общей базой не происходит инвертирование фазы сигнала, а уровень шумов на высоких частотах снижается. Но, как уже было сказано, коэффициент усиления по току у нее всегда немного меньше единицы. Правда, коэффициент усиления по напряжению здесь такой же, как и в схеме с общим эмиттером. К недостаткам схемы с общей базой можно также отнести необходимость использования двух источников питания.

Схема включения с общим коллектором


Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь.

Напомню, что отрицательной называют такую обратную связь, при которой выходной сигнал подается обратно на вход, чем снижает уровень входного сигнала. Таким образом происходит автоматическая корректировка при случайном изменении параметров входного сигнала

Коэффициент усиления по току почти такой же, как и в схеме с общим эмиттером. А вот коэффициент усиления по напряжению маленький (основной недостаток этой схемы). Он приближается к единице, но всегда меньше ее. Таким образом, коэффициент усиления по мощности получается равным всего нескольким десяткам единиц.

В схеме с общим коллектором фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным — потому, что выходное напряжение снимается с эмиттера относительно общего провода.

Такое включение используют для согласования транзисторных каскадов или когда источник входного сигнала имеет высокое входное сопротивление (например, пьезоэлектрический звукосниматель или конденсаторный микрофон).

Два слова о каскадах

Бывает такое, что нужно увеличить выходную мощность (т.е. увеличить коллекторный ток). В этом случае используют параллельное включение необходимого числа транзисторов.

Естественно, они должны быть примерно одинаковыми по характеристикам. Но необходимо помнить, что максимальный суммарный коллекторный ток не должен превышать 1,6-1,7 от предельного тока коллектора любого из транзисторов каскада.
Тем не менее (спасибо wrewolf за замечание), в случае с биполярными транзисторами так делать не рекомендуется. Потому что два транзистора даже одного типономинала хоть немного, но отличаются друг от друга. Соответственно, при параллельном включении через них будут течь токи разной величины. Для выравнивания этих токов в эмиттерные цепи транзисторов ставят балансные резисторы. Величину их сопротивления рассчитывают так, чтобы падение напряжения на них в интервале рабочих токов было не менее 0,7 В. Понятно, что это приводит к значительному ухудшению КПД схемы.

Может также возникнуть необходимость в транзисторе с хорошей чувствительностью и при этом с хорошим коэффициентом усиления. В таких случаях используют каскад из чувствительного, но маломощного транзистора (на рисунке — VT1), который управляет энергией питания более мощного собрата (на рисунке — VT2).

Другие области применения биполярных транзисторов

Транзисторы можно применять не только схемах усиления сигнала. Например, благодаря тому, что они могут работать в режимах насыщения и отсечки, их используют в качестве электронных ключей. Также возможно использование транзисторов в схемах генераторов сигнала. Если они работают в ключевом режиме, то будет генерироваться прямоугольный сигнал, а если в режиме усиления — то сигнал произвольной формы, зависящий от управляющего воздействия.

Биполярные транзисторы: принцип работы, характеристики и параметры

Биполярные транзисторы – электронные полупроводниковые приборы, отличающиеся от полевых способом переноса заряда. В полевых (однополярных) транзисторах, используемых в основном в цифровых устройствах, заряд переносится или дырками, или электронами. В биполярных же в процессе участвуют и электроны, и дырки. Биполярные транзисторы, как и другие типы транзисторов, в основном используются в качестве усилителей сигнала. Применяются в аналоговых устройствах.

Читайте также:
Характеристики кварц-виниловой плитки для пола

Особенности устройства биполярного транзистора

Биполярный транзистор включает в себя три области:

  • эмиттер;
  • базу – очень тонкую, которая изготавливается из слаболегированного полупроводника, сопротивление этой области высокое;
  • коллектор – его область больше по размерам, чем область эмиттера.

К каждой области припаяны металлоконтакты, служащие для подсоединения прибора в электроцепь.

Электропроводность коллектора и эмиттера одинакова и противоположна электропроводности базы. В соответствии с видом проводимости областей, различают p-n-p или n-p-n приборы. Устройства являются несимметричными из-за разницы в площади контакта – между эмиттером и базой она значительно ниже, чем между базой и коллектором. Поэтому К и Э поменять местами путем смены полярности невозможно.

Принцип работы биполярного транзистора

Этот тип транзистора имеет два перехода:

  • электронно-дырочный между эмиттером и базой – эмиттерный;
  • между коллектором и базой – коллекторный.

Дистанция между переходами маленькая. Для высокочастотных деталей она составляет менее 10 мкм, для низкочастотных – до 50 мкм. Для активации прибора на него подают напряжение от стороннего ИП. Принцип действия биполярных транзисторов с p-n-p и n-p-n переходами одинаков. Переходы могут функционировать в прямом и обратном направлениях, что определяется полярностью подаваемого напряжения.

Режимы работы биполярных транзисторов

Режим отсечки

Переходы закрыты, прибор не работает. Этот режим получают при обратном подключении к внешним источникам. Через оба перехода протекают обратные малые коллекторные и эмиттерные токи. Часто считается, что прибор в этом режиме разрывает цепь.

Активный инверсный режим

Является промежуточным. Переход Б-К открыт, а эмиттер-база – закрыт. Ток базы в этом случае значительно меньше токов Э и К. Усиливающие характеристики биполярного транзистора в этом случае отсутствуют. Этот режим востребован мало.

Режим насыщения

Прибор полностью открыт. Оба перехода подключаются к источникам тока в прямом направлении. При этом снижается потенциальный барьер, ограничивающий проникновение носителей заряда. Через эмиттер и коллектор начинают проходить токи, которые называют «токами насыщения».

Схемы включения биполярных транзисторов

В зависимости от контакта, на который подается источник питания, различают 3 схемы включения приборов.

С общим эмиттером

Эта схема включения биполярных транзисторов обеспечивает наибольшее увеличение вольтамперных характеристик (ВАХ), поэтому является самой востребованной. Минус такого варианта – ухудшение усилительных свойств прибора при повышении частоты и температуры. Это означает, что для высокочастотных транзисторов рекомендуется подобрать другую схему.

С общей базой

Применяется для работы на высоких частотах. Уровень шумов снижен, усиление не очень велико. Каскады приборов, собранные по такой схеме, востребованы в антенных усилителях. Недостаток варианта – необходимость в двух источниках питания.

С общим коллектором

Для такого варианта характерна передача входного сигнала обратно на вход, что существенно уменьшает его уровень. Коэффициент усиления по току – высокий, по напряжению – небольшой, что является минусом этого способа. Схема приемлема для каскадов приборов в случаях, если источник входного сигнала обладает высоким входным сопротивлением.

Какие параметры учитывают при выборе биполярного транзистора?

  • Материал, из которого он изготовлен, – арсенид галлия или кремний.
  • Частоту. Она может быть – сверхвысокая (более 300 МГц), высокая (30-300 МГц), средняя – (3-30 МГц), низкая (менее 3 МГц).
  • Максимальную рассеиваемую мощность.

Была ли статья полезна?

Комментарии

Оптовая продажа электронных компонентов и радиодеталей с доставкой по всей России

Что такое биполярный транзистор

Биполярный транзистор основан на принципе использования зарядов обоих значений (двигающиеся электроны и дырки). Этот тип самый распространенный активное полупроводниковое устройство. Любой из биполярных транзисторов состоит из трех слоев – р-n и n-р-n. Каждый из них имеет контакт с внешним выводом. Слой, который находится в середине, называется базой, один из слоев, лежащих по краям – эмиттер, другой слой на противоположном конце транзистора носит название коллектор.

В данной статье будут описаны все особенности строения, функционирования, а также где они могут использоваться в современной электротехнике. В качестве дополнения, статья содержит в себе две видеолекции по транзисторам, а также одну подробную скачиваемую статью.

Биполярные транзисторы

Транзисторы можно рассматривать как своего рода переключатели, такие же как и многие электронные компоненты, например, реле или вакуумные лампы. Транзисторы применяются в различных схемах, и редко какая схема обходится без них, даже сейчас, при широком использовании микросхем. Существует два основных вида биполярных транзисторов – n-p-n и p-n-p, они различаются по проводимости.

Два схожих по параметрам транзистора разных проводимостей называют комплементарной парой. Если в какой-нибудь схеме, например, в усилителе, заменить транзисторы одного вида на транзисторы другого вида со схожими параметрами (не забыв изменить при этом полярность питающих напряжений, электролитических конденсаторов и полупроводниковых диодов), то схема будет работать точно так же, за исключением СВЧ диапазона, поскольку n-p-n транзисторы являются более высокочастотными, чем p-n-p, и здесь возможно не удастся подобрать комплементарную пару.

Биполярный транзистор – трёхэлектродный полупроводниковый прибор, разновидность транзистора. Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости.

Чаще всего в схемах применяют транзисторы структуры n-p-n. Это связано с тем, что в схемах эмиттеры транзисторов соединены с отрицательным источником питания.

Соответственно и общий провод схемы так же будет соединён с отрицательным выводом источника питания, что является общепринятым стандартом.

Транзисторы выпускаются в различных корпусах, но все они имеют три вывода (у высокочастотных транзисторов иногда имеется и четвёртый вывод, соединённый с металлическим корпусом – экраном):

  • База- это управляющий вывод;
  • Коллектор- находится под положительным потенциалом (для n-p-n транзистора);
  • Эмиттер- находится под отрицательным потенциалом (для n-p-n транзистора).
Читайте также:
Угловые ванны – виды, размеры и преимущества

Принцип действия транзистора

В активном режиме работы, транзистор включён так, что его эмиттерный переход смещён в прямом направлении (открыт), а коллекторный переход смещён в обратном направлении. Для определённости рассмотрим npn транзистор, все рассуждения повторяются абсолютно аналогично для случая pnp транзистора, с заменой слова «электроны» на «дырки», и наоборот, а также с заменой всех напряжений на противоположные по знаку.

В npn транзисторе электроны, основные носители тока в эмиттере проходят через открытый переход эмиттер-база в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками), часть диффундирует обратно в эмиттер.

Однако, из-за того что базу делают очень тонкой и очень слабо легированной, большая часть электронов, инжектированная из эмиттера диффундирует в область коллектора. Сильное электрическое поле обратно смещённого коллекторного перехода захватывает электроны (напомним, что они неосновные носители в базе, поэтому для них переход открыт), и проносит их в коллектор. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Iэ=Iб+Iк).

Коэффициент α, связывающий ток эмиттера и ток коллектора (Iк=α Iэ) называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α 0.9 — 0.999, чем больше коэффициент, тем лучше транзистор. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер.

Биполярный транзистор – электропреобразовательный полупроводниковый прибор с одним или несколькими электрическими переходами, предназначенный для усиления, преобразования и генерации электрических сигналов. Вся конструкция выполняется на пластине кремния, либо германия, либо другого полупроводника, в которой созданы три области с различными типами электропроводности.

Средняя область называется базой, одна из крайних областей – эмиттером, другая – коллектором. Соответственно в транзисторе два p-n-перехода: эмиттерный – между базой и эмиттером и коллекторный – между базой и коллектором.

Область базы должна быть очень тонкой, гораздо тоньше эмиттерной и коллекторной областей (на рисунке это показано непропорционально). От этого зависит условие хорошей работы транзистора. Транзистор работает в трех режимах в зависимости от напряжения на его переходах.

При работе в активном режиме на эмиттерном переходе напряжение прямое, на коллекторном – обратное. В режиме отсечки на оба перехода подано обратное напряжение. Если на эти переходы подать прямое напряжение, то транзистор будет работать в режиме насыщения.

Физические процессы

Возьмем транзистор типа n-p-n в режиме без нагрузки, когда подключены только два источника постоянных питающих напряжений E1 и E2. На эмиттерном переходе напряжение прямое, на коллекторном – обратное. Соответственно, сопротивление эмиттерного перехода мало и для получения нормального тока достаточно напряжения E1 в десятые доли вольта. Сопротивление коллекторного перехода велико и напряжение E2 составляет обычно десятки вольт.

Соответственно, как и раньше, темные маленькие кружки со стрелками – электроны, красные – дырки, большие кружки – положительно и отрицательно заряженные атомы доноров и акцепторов. Вольт-амперная характеристика эмиттерного перехода представляет собой характеристику полупроводникового диода при прямом токе, а вольт-амперная характеристика коллекторного перехода подобна ВАХ диода при обратном токе.

Принцип работы транзистора заключается в следующем. Прямое напряжение эмиттерного перехода uб-э влияет на токи эмиттера и коллектора и чем оно выше, тем эти токи больше. Изменения тока коллектора при этом лишь незначительно меньше изменений тока эмиттера. Получается, что напряжение на переходе база-эмиттер, т. е. входное напряжение, управляет током коллектора. На этом явлении основано усиление электрических колебаний с помощью транзистора. Основные биполярные транзисторы приведены в таблице ниже.

При увеличении прямого входного напряжения u б-э понижается потенциальный барьер в эмиттерном переходе и, соответственно, возрастает ток через этот переход iэ. Электроны этого тока инжектируются из эмиттера в базу и благодаря диффузии проникают сквозь базу в коллекторный переход, увеличивая ток коллектора. Поскольку коллекторный переход работает при обратном напряжении, то в этом переходе возникают объемные заряды (на рисунке большие кружки). Между ними возникает электрическое поле, которое способствует продвижению (экстракции) через коллекторный переход электронов, пришедших сюда из эмиттера, т. е. втягивают электроны в область коллекторного перехода.

Если толщина базы достаточно мала и концентрация дырок в ней невелика, то большинство электронов, пройдя через базу, не успевает рекомбинировать с дырками базы и достигает коллекторного перехода. Лишь небольшая часть электронов рекомбинирует в базе с дырками. В результате этого возникает ток базы.

Ток база является бесполезным и даже вредным. Желательно, чтобы он был как можно меньше. Именно поэтому базовую область делают очень тонкой и уменьшают в ней концентрацию дырок. Тогда меньшее число электронов будет рекомбинировать с дырками и, повторюсь, ток базы будет незначительным.

Когда к эмиттерному переходу не приложено напряжение, можно считать, что в этом переходе тока нет. Тогда область коллекторного перехода имеет значительное сопротивление постоянному току, поскольку основные носители зарядов удаляются от этого перехода и по обе границы создаются области, обедненные этими носителями. Через коллекторный переход протекает очень небольшой обратный ток, вызванный перемещением навстречу друг другу неосновных носителей.

Если же под действием входного напряжения возникает значительный ток эмиттера, то в базу со стороны эмиттера инжектируются электроны, для данной области являющиеся неосновными носителями. Они доходят до коллекторного перехода не успевая рекомбинировать с дырками при прохождении через базу.

Чем больше ток эмиттера, тем больше электронов приходит к коллектору, тем меньше становится его сопротивление, следовательно, ток коллектора увеличивается. Аналогичные явления происходят в транзисторе типа p-n-p, надо только местами поменять электроны и дырки, а также полярность источников E1 и E2.

Читайте также:
Французская раскладушка: принцип работы и особенности

Помимо рассмотренных процессов существует еще ряд явлений. Рассмотрим модуляцию толщины базы.При повышении напряжения на коллекторном переходе в нем происходит лавинное размножение заряда, обусловленное в основном ударной ионизацией.

Это явление и туннельный эффект могут вызвать электрический пробой, который при возрастании тока может перейти в тепловой пробой. Все происходит также, как у диодов, но в транзисторе при чрезмерном коллекторном токе тепловой пробой может наступить без предварительного электрического пробоя.

Тепловой пробой может наступить без повышения коллекторного напряжения до пробивного. При изменении напряжений на коллекторном и эмиттерном переходах изменяется их толщина, в результате чего изменяется толщина базы.

При увеличении инжекции носителей из эмиттера в базу происходит накопление неосновных носителей заряда в базе, т. е. увеличение концентрации и суммарного заряда этих носителей. А вот при уменьшении инжекции происходит уменьшение концентрации и суммарного заряда этих самых носителей в базе и сей процесс обозвали рассасыванием неосновных носителей зарядов в базе.

И напоследок одно правило: при эксплуатации транзисторов запрещается разрывать цепь базы, если не включено питание цепи коллектора. Надо также включать питание цепи базы, а потом цепи коллектора, но не наоборот.

Биполярные транзисторы

Биполярный транзистор – это полупроводниковый прибор, состоящий из трех чередующихся областей полупроводника с различным типом проводимости (р-п-р или п-р-п) с выводом от каждой области. Рассмотрим работу транзистора n-р-n-типа. Чередующиеся области образуют два р-п-перехода база–эмиттер (БЭ) и база–коллектор (БК).

К переходу БЭ прикладывают прямое напряжение EБЭ, под действием которого электроны n-области эмиттера устремляются в базу, создавая ток эмиттера. Концентрацию примесей в эмиттере делают во много раз больше, чем в базе, а саму базу по возможности тоньше. Поэтому лишь незначительная часть (1–5%) испущенных эмиттером электронов рекомбинирует с дырками базы.

Большая же часть электронов, миновав узкую (доли микрона) область базы, “собирается” коллекторным напряжением Ек, представляющим обратное напряжение для перехода БК, и, устремляясь к плюсу внешнего источника Eк, создает коллекторный ток, протекающий по нагрузке Rн. Электроны, рекомбинировавшие с дырками базы, составляют ток базы IБ.

Ток коллектора, таким образом, определяется током эмиттера за вычетом тока базы. Аналогично работает транзистор р-n-р-типа, отличаясь лишь тем, что его эмиттер испускает в базу не электроны, а дырки, поэтому полярности прикладываемых к нему прямого UЭБ и обратного Ек напряжений должны быть противоположны транзистору п-р-п-типа.

На условном обозначении транзисторов стрелка ставится на эмиттере и направлена всегда от р-области к n-области. На рис. 1.8, б приведено условное обозначение транзистора п-р-п, а на рис. 1.9, бр-п-р. Кружок вокруг транзистора означает, что транзистор изготовлен в самостоятельном корпусе, а отсутствие кружка – что транзистор выполнен заодно с другими элементами на пластинке полупроводника интегральной микросхемы.

Стрелку эмиттера удобно рассматривать как указатель полярности прямого напряжения, приложенного между базой и эмиттером, которое “открывает” (подобно выпрямительному диоду) транзистор. При использовании транзистора в электронных устройствах нужны два вывода для входного сигнала и два – для выходного.

Так как у транзистора всего лишь три вывода, один из них должен быть общим, принадлежащим одновременно и к входной, и к выходной цепи. Возможны три варианта схем включения транзисторов – с общей базой, общим эмиттером и с общим коллектором.

Схема с общей базой

Схема включения транзистора с общей базой (ОБ) показана на рис. 1.10. Входным сигналом для схемы с ОБ является напряжение, поданное между эмиттером и базой UBX = = UЭБ; выходным – напряжение, выделяемое на нагрузке Uвых = IкRн; входным током – ток эмиттера Iвх = IЭ; выходным током – ток коллектора Iвых = Iк.

Входное напряжение UЭБ является управляющим для транзистора, поэтому небольшое его изменение (па доли вольт) приводит к изменению тока эмиттера в очень широких пределах – практически от нуля до максимального. Максимальный ток определяется назначением транзистора (маломощные, средней мощности и большой мощности) и соответствующей конструкцией.

Так как напряжение UΚБ является обратным, величина напряжения внешнего источника Ек может в десятки раз превышать значение напряжения UЭБ. Падение напряжения, выделяемого на нагрузке, будет тем больше, чем больше ток коллектора, при этом на самом транзисторе будет падать лишь небольшое напряжение UКБ, которое будет тем меньше, чем больше ток коллектора.

Таким образом, изменение на доли вольт входного напряжения приводит к изменению напряжения на нагрузке, чуть меньшего, чем напряжение Ек. Это положение определяет усилительные свойства транзистора.

Для оценки работы транзистора и его усилительных свойств в различных схемах включения рассматривают приращения входных и вызванные ими приращения выходных величин. Рассматривая транзистор как усилитель, принято характеризовать его свойства коэффициентами усиления и значением входного сопротивления. Различают три вида коэффициентов усиления:

  • • коэффициент усиления по току КI = ΔIвых /ΔIвх;
  • • коэффициент усиления по напряжению КU = ΔUвых/ΔUвх;
  • • коэффициент усиления по мощности КР = КI • КU.

Отношение изменения входного напряжения к изменению входного тока: Rвх = ΔUвх/ΔIвх. Входное сопротивление любого усилителя приводит к искажению входного сигнала. Любой реальный источник сигнала обладает некоторым внутренним сопротивлением, и при подключении его к усилителю образуется делитель напряжения, состоящий из внутреннего сопротивления источника и входного сопротивления усилителя.

Поэтому чем выше входное сопротивление усилителя, тем большая часть сигнала будет выделяться на этом сопротивлении и усиливаться и тем меньшая его часть будет падать на внутреннем сопротивлении самого источника. Таким образом, КРБ тоже определяется соотношением сопротивлений. Так как коэффициент усиления схемы с ОБ по току КIБ оказывается меньше единицы, она применения не нашла.

Читайте также:
Стеклохолст (78 фото): что это такое, применение паутинки, малярный продукт под покраску на потолок, продукция Oscar и Wellton

Транзисторы: схема, принцип работы,​ чем отличаются биполярные и полевые

Транзистор — повсеместный и важный компонент в современной микроэлектронике. Его назначение простое: он позволяет с помощью слабого сигнала управлять гораздо более сильным.

В частноти, его можно использовать как управляемую «заслонку»: отсутствием сигнала на «воротах» блокировать течение тока, подачей — разрешать. Иными словами: это кнопка, которая нажимается не пальцем, а подачей напряжения. В цифровой электронике такое применение наиболее распространено.

Транзисторы выпускаются в различных корпусах: один и тот же транзистор может внешне выглядеть совершенно по разному. В прототипировании чаще остальных встречаются корпусы:

Обозначение на схемах также варьируется в зависимости от типа транзистора и стандарта обозначений, который использовался при составлении. Но вне зависимости от вариации, его символ остаётся узнаваемым.

Биполярные транзисторы

Биполярные транзисторы (BJT, Bipolar Junction Transistors) имеют три контакта:

Основной характеристикой биполярного транзистора является показатель hfe также известный, как gain. Он отражает во сколько раз больший ток по участку коллектор–эмиттер способен пропустить транзистор по отношению к току база–эмиттер.

Например, если hfe = 100, и через базу проходит 0.1 мА, то транзистор пропустит через себя как максимум 10 мА. Если в этом случае на участке с большим током находится компонент, который потребляет, например 8 мА, ему будет предоставлено 8 мА, а у транзистора останется «запас». Если же имеется компонент, который потребляет 20 мА, ему будут предоставлены только максимальные 10 мА.

Также в документации к каждому транзистору указаны максимально допустимые напряжения и токи на контактах. Превышение этих величин ведёт к избыточному нагреву и сокращению службы, а сильное превышение может привести к разрушению.

NPN и PNP

Описанный выше транзистор — это так называемый NPN-транзистор. Называется он так из-за того, что состоит из трёх слоёв кремния, соединённых в порядке: Negative-Positive-Negative. Где negative — это сплав кремния, обладающий избытком отрицательных переносчиков заряда (n-doped), а positive — с избытком положительных (p-doped).

NPN более эффективны и распространены в промышленности.

PNP-транзисторы при обозначении отличаются направлением стрелки. Стрелка всегда указывает от P к N. PNP-транзисторы отличаются «перевёрнутым» поведением: ток не блокируется, когда база заземлена и блокируется, когда через неё идёт ток.

Полевые транзисторы

Полевые транзисторы (FET, Field Effect Transistor) имеют то же назначение, но отличаются внутренним устройством. Частным видом этих компонентов являются транзисторы MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor). Они позволяют оперировать гораздо большими мощностями при тех же размерах. А управление самой «заслонкой» осуществляется исключительно при помощи напряжения: ток через затвор, в отличие от биполярных транзисторов, не идёт.

Полевые транзисторы обладают тремя контактами:

N-Channel и P-Channel

По аналогии с биполярными транзисторами, полевые различаются полярностью. Выше был описан N-Channel транзистор. Они наиболее распространены.

P-Channel при обозначении отличается направлением стрелки и, опять же, обладает «перевёрнутым» поведением.

Подключение транзисторов для управления мощными компонентами

Типичной задачей микроконтроллера является включение и выключение определённого компонента схемы. Сам микроконтроллер обычно имеет скромные характеристики в отношении выдерживаемой мощности. Так Ардуино, при выдаваемых на контакт 5 В выдерживает ток в 40 мА. Мощные моторы или сверхъяркие светодиоды могут потреблять сотни миллиампер. При подключении таких нагрузок напрямую чип может быстро выйти из строя. Кроме того для работоспособности некоторых компонентов требуется напряжение большее, чем 5 В, а Ардуино с выходного контакта (digital output pin) больше 5 В не может выдать впринципе.

Зато, его с лёгкостью хватит для управления транзистором, который в свою очередь будет управлять большим током. Допустим, нам нужно подключить длинную светодиодную ленту, которая требует 12 В и при этом потребляет 100 мА:

Теперь при установке выхода в логическую единицу (high), поступающие на базу 5 В откроют транзистор и через ленту потечёт ток — она будет светиться. При установке выхода в логический ноль (low), база будет заземлена через микроконтроллер, а течение тока заблокированно.

Обратите внимание на токоограничивающий резистор R. Он необходим, чтобы при подаче управляющего напряжения не образовалось короткое замыкание по маршруту микроконтроллер — транзистор — земля. Главное — не превысить допустимый ток через контакт Ардуино в 40 мА, поэтому нужно использовать резистор номиналом не менее:

здесь Ud — это падение напряжения на самом транзисторе. Оно зависит от материала из которого он изготовлен и обычно составляет 0.3 – 0.6 В.

Но совершенно не обязательно держать ток на пределе допустимого. Необходимо лишь, чтобы показатель gain транзистора позволил управлять необходимым током. В нашем случае — это 100 мА. Допустим для используемого транзистора hfe = 100, тогда нам будет достаточно управляющего тока в 1 мА

Нам подойдёт резистор номиналом от 118 Ом до 4.7 кОм. Для устойчивой работы с одной стороны и небольшой нагрузки на чип с другой, 2.2 кОм — хороший выбор.

Если вместо биполярного транзистора использовать полевой, можно обойтись без резистора:

это связано с тем, что затвор в таких транзисторах управляется исключительно напряжением: ток на участке микроконтроллер — затвор — исток отсутствует. А благодаря своим высоким характеристикам схема с использованием MOSFET позволяет управлять очень мощными компонентами.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: