Теплопередача стеклопакетов: что это такое и какими коэффициентами с нею бороться

Окна для энергоэффективных зданий

Запись дневника создана пользователем evraz, 02.05.14
Просмотров: 18.001, Комментариев: 4

Окна для пассивного дома – высочайшее качество светопрозрачных строительных конструкций

Пояснения к рисунку: Ug – коэффициент теплопередачи остекления (Вт/м2К); R0 – сопротивление теплопередаче, (м2ºС)/Вт; g – коэффициент общего пропускания солнечной энергии. Данные температуры на внутренней поверхности рассчитаны в таблице для наружной температуры -10 °C и внутренней 20 °C.

На рисунке представлено развитие остеклений: от одинарного остекления (крайнее слева) до остекления, соответствующего стандарту пассивного дома (крайнее справа). Только у остеклений такого качества даже в самые суровые морозы будут теплые внутренние поверхности. Незначительные потери энергии и улучшенный комфорт являются преимуществами остекления, соответствующего стандарту пассивного дома.

Температурное расслоение воздуха в помещении при использовании окон стандарта пассивного дома не наблюдается, при обычных же окнах оно значительно. Следовательно, отопительный прибор может быть размещен у внутренней стены, а не под окном, и, несмотря на это, будет достигнут оптимальный комфорт.

Тепловизионный снимок наружных стен пассивного дома с внутренней стороны. Все поверхности теплые: оконная рама (коробка), рама оконной створки и остекление. Даже по краю остекления температура не опускается ниже 15 °C, см. фото. (Фото: PHI, пассивный дом в г. Дармштадт, р-н Кранихштайн; в доме отопительные приборы стоят у внутренней стены)

Для сравнения окно в старом доме с “изолированным остеклением”: здесь температуры на поверхности составляют в среднем меньше 14 °C. Наглядно видны все дефекты монтажа – тепловые мосты, особенно на бетонной перемычке. (Фото: PH)

Для сравнения: двойное остекление с низкоэмиссионным покрытием (здесь показана установленная в наружную стену остекленная дверь) уже имеет более высокие температуры на внутренней поверхности (16 °C в середине). На снимке бросается в глаза плохая изоляция обычных оконных рам. Такие высокие теплопотери и низкие температуры на внутренней поверхности сегодня не допустимы. Оконные рамы стандарта пассивного дома имеют значительно лучшие характеристики.

Ни одна другая строительная конструкция не развивалась так стремительно в части качества теплозащиты как окно. Коэффициент теплопередачи Uw существующих на рынке окон уменьшился за последние 30 лет в 8 раз! (Или соответственно сопротивление теплопередаче R0увеличилось в 8 раз!)

Время заменять окна с одинарным остеклением

В начале 70-х годов большинство окон в Германии были с одинарным остеклением. Коэффициент теплопередачи таких окон составлял примерно 5,5 Вт/м2°C, ежегодная потеря тепла через 1 м2 окна равнялась приблизительно расходу энергии в размере 60 литров жидкого топлива. Однако не только потери тепла являются высокими. Из-за плохой изоляции холод проникает на внутреннию поверхность окна. Нередко температура там составляет ниже 0 °C и образуются ледяные узоры. Плохая теплоизоляция связана с низким комфортом внутри помещений и высоким риском повреждения оконных конструкций.

“Изолированное” остекление – улучшенная промежуточная стадия

Немного лучше были так называемые “изолированные стекла”, т.е. стеклопакеты с двумя стеклами. Их начали устанавливать в новостройках и модернизированных зданиях после первого нефтяного кризиса. Между двумя стеклами находился изолированный слой воздуха. Коэффициент теплопередачи был снижен таким образом до 2,8 Вт/(м²°C). Это означает, что по сравнению с одинарным остеклением потери тепла были уменьшены вполовину. Температура на внутренней поверхности стекла изолированных окон в самые холодные дни составляет 7,5 °C. Ледяные узоры больше не образуются, но поверхности окон имеют некомфортные температуры и в холодную погоду они влажные, т.к. точка росы ниже нормы.

Двойное остекление с низкоэмиссионным покрытием и заполнением стеклопакета инертным газом – это намного лучше, но еще недостаточно хорошо

Значительным достижением стало применение очень тонких металлических теплоотражающих покрытий, нанесенных на стекла с внутренних сторон межстекольного пространства стеклопакетов (английское название: покрытие – “low-e”). Благодаря этому тепловое излучение (теплообмен излучением) между стеклами было сильно снижено. Kроме того традиционное заполнение стеклопакета осушенным воздухом было заменено менее теплопроводным инертным газом, например аргоном. С приходом на рынок такие“теплоизоляционные остекления” применялись на основании Постановления по тепловой защите от 1995 г. как стандартный продукт почти во всех новостройках и модернизированных зданиях. Интересным фактом является то, что подорожание такого остекления в связи со значительным улучшением его качества не произошло. Такое стандартное окно с деревянной или пластиковой рамой и oбычным соединением по краю остекления имеет коэффициент теплопередачи между 1,3 и 1,7 Вт/м2К. Таким образом, потери тепла по сравнению с обычными стеклопакетами с двумя стеклами еще раз вдвое уменьшились. Средняя температура на внутренней поверхности составляет даже при сильном морозе приблизительно 13 °C. Однако ощущение холодного воздуха у окна остается еще заметным и не исключено температурное расслоение воздуха в помещении, вызывающее дискомфорт.

Тройное остекление с двумя низкоэмиссионными покрытиями и заполнением инертным газом – оптимальное качество для перспективного строительства и модернизации

Прорывом в энергоэффективном строительстве в Германии стало создание теплоизолированного тройного остекления. В таком стеклопакете две камеры с заполнением инертным газом и два низкоэмиссионных покрытия (low-e), коэффициент теплопередачи U составляет от 0,5 до 0,8 Вт/м2°C. Если необходимо достичь таких же показателей не только на стекле, но и на всем окне, то для этого нужно применить хорошо теплоизолированные оконные рамы, а также теплоизолированное соединение по краю остекления. В результате получается “теплое окно” или “окно стандарта пассивного дома”. Годовые теплопотери такого окна для условий Германии снижаются до менее 7 литров жидкого топлива на квадратный метр оконной поверхности, что составляет одну восьмую от первоночального показателя. Если учитывать то, что попадающие через окно стандарта пассивного дома солнечная энергия значительно уменьшает теплопотери даже в зимнее время, то чистые потери через окно такого качества пренебрежимо малы. Кроме того, теплоизолированное тройное остекление “окупается” сегодня в Германии уже при покупке одного окна исключительно засчет достигнутой экономии энергопотерь.

Читайте также:
Универсальное приспособление для заточки сверл по металлу

Это не случайность, что чистые энергопотери в пассивном доме пренебрежимо малы – так малы, как и в других строительных конструкциях с хорошей теплоизоляцией. Качество теплоизоляции наружной оболочки (с коэффициентом теплопередачи приблизительно 0,15 Вт/м2К) точно соответствует хорошим теплоизоляционным свойствам окон стандарта пассивного дома. Благодоря качеству этих двух составляющих в целом возможно строительство пассивных домов во влажном и холодном климате Средней Европы. Результатом этого является дом, в котором тепло и комфортно, и в котором благодаря возврату тепла из вытяжного воздуха создается значительная экономия на отопление.

Окна стандарта пассивного дома отличаются не только малыми теплопотерями, но и также улучшенным комфортом. При сильном морозе температура на внутренней поверхности окна не опускается ниже 17 °C. В этих условиях больше не ощущается “холодного излучения” от окна. Кроме того, в комнате устраняется некомфортное температурное расслоение воздуха, даже тогда, когда под окном не стоит нагревательный прибор. Конечно, при этом должны быть соблюдены и другие критерии пассивного дома, как, например, герметичность и отсутствие тепловых мостов. В этих условиях гарантирован температурный комфорт в помещении, независимо от вида притока тепла. Это стало возможно благодаря улучшенным окнам.

Окна стандарта пассивного дома – это высококачественные продукты, которые были разработаны более чем 40 предприятиями и в настоящий момент продаются на рынке. Экономия энергии по сравнению с обычными окнами составляет не единичные проценты, а больше 50%. Благодаря этим окнам можно экономить не только энергию и наличные деньги, но и защищать окружающую среду. Окна стандарта пассивного дома являются примером эффективной техники, которая была создана в Европе и, производство которой создает рабочие места в регионах, а также одновременно ослабляет зависимость от энергетических рынков.

по материалам passiv-rus ru

Пластиковая дистанционная рамка
Пластиковая дистанционная рамка – это одна из последних разработок в области оконных технологий. Она обладает коэффициентом теплопроводности 0.16 – 0.20 Вт/кв.м∙°С (для сравнения, алюминиевая 200 – 220 Вт/кв.м∙°С). При ее использовании исключается образование термического мостика по краю стеклопакета.

Как и алюминивая рамка, пластиковая дистанционная рамка предназначена для выполнения следующих функций:

  • обеспечение в стеклопакете определенных расстояний между стеклами,
  • обеспечение первичного каркаса,
  • обеспечение камер для осушителя.

Так как краевые зоны стеклопакета – это наиболее проблемные зоны, связанные с потерями тепла, то применяя пластиковую дистанционную рамку, можно значительно снизить риск появление конденсата. Это достигается за счет величины коэффициента теплопроводности твердого пластика (0.16 – 0.17 Вт/кв.м∙°С), из которого выполнена пластиковая дистанционная рамка. По сравнению с алюминиевой дистанционной рамкой, потери тепла снижаются примерно в 10 раз.

Еще одним показателем качества соединения стеклопакета является прочность и долговечность. При применении пластика, линейное расширение рамки уменьшается в 3-3.5 раза, по сравнению с алюминием. При этом устраняется излишнее напряжение в угловых зонах, а это значительно продлевает службу стеклопакета.
————————

Оборудование для водяного теплого пола и систем отопления (и сопутствующий сервис) на сайте в профиле.

Сопротивление теплопередаче светопрозрачных конструкций

Каждый современный житель хочет, чтобы его дом был не только уютным, но и теплым. Специально для этого проводится монтаж «теплого пола», а также применяется комплекс работ по утеплению стен, балконов и кровли. Но при выборе оконных конструкций чрезвычайно важно обращать внимание на приведенное сопротивление теплопередаче. Сегодня почти все изготовители такой продукции в качестве рекламы используют громкие фразы, обещающие сделать помещения дома максимально теплыми. В советские времена абсолютно в каждом доме были деревянные окна, которые приходилось дополнительно утеплять клейкими лентами и различными тканевыми материалами. Но сейчас все изменилось, и такие конструкции стремительно заменяют изделия из ПВХ от различных производителей.


Таблица сопротивления для светопрозрачных блоков

Именно поэтому почти все рекламные кампании, агитирующие приобрести ту или иную продукцию, направлены на то, чтобы описывать достоинства материалов рамы (это может быть древесина, прочный пластик или высококачественный алюминий), определенный класс профилей в зависимости от количества камер, которые имеет каждое конкретное изделие, а также, разумеется, превосходные теплоизоляционные характеристики. Но тут сразу же возникают некоторые противоречия, ведь, как известно, оконная конструкция состоит не только из рамы. Основная часть изделия – это большая остекленная поверхность, которая изготовлена из всевозможных типов стекол или же цельных стеклопакетов, имеющих совершенно иной коэффициент сопротивления.


Таблица нормируемого сопротивления оконных конструкций РФ (отопительный сезон)

Общее определение термина

Понятие сопротивления теплопередаче (СТП) сформулировано в ГОСТ Р 54851-2011. Окна, наряду со стенами, дверьми, кровлей и т.д., являются элементами конструкции, ограждающей внутреннее пространство для создания комфортной среды обитания человека. СТП ограждения — это коэффициент R, значение которого демонстрирует теплоизоляционные свойства конструкции. Чем больше абсолютная величина R, тем меньше будет потерь тепла из помещения.

Единица измерения R в системе СИ — [м2* 0С/Вт]. Значение R равно разнице температур на наружной ( Тн ),и внутренней ( Твн ) поверхностях ограждения для потока тепла Q мощностью 1 Вт, проходящего через 1 м2 тепловой защиты.

Формула для расчета R выглядит следующим образом:

R = ( Твн — Тн ) / Q

Чем больше значение R, тем меньше будут теплопотери. Эта формула напоминает выражение для закона Ома, поэтому R иногда, по аналогии с электрическим термином, называют теплосопротивлением.

Читайте также:
Утепление стен из пеноблоков изнутри

Сопротивление теплопередаче окон

Современное окно (на базе пластикового, алюминиевого и даже деревянного профиля) представляет собой высокотехнологичный конструктор, состоящий из элементов с различными тепловыми свойствами.

Полное сопротивление оконного блока получается суммированием термических сопротивлений его однородных компонент:

  • светопрозрачного заполнения (силикатного, витражного, акрилового стекол, светопропускающих пленок и т.п.);
  • обрамляющих элементов — профилей из различных материалов (дерева, алюминия, стали, пластика ПВХ);
  • металлических и пластмассовых элементов крепежа.

Теплопередача стеклопакетов: что это такое и какими коэффициентами с нею бороться

Главный показатель стеклопакета – его способность удерживать тепло в помещении . В отзывах пользователей пластиковых и пр. окон часто можно встретить чисто субъективные характеристики: «Поставили окна ПВХ, сразу стало теплее»; «С пластиковыми стеклопакетами даже зимой жарко» и т.п.

«Как правильно выбрать пластиковое окно и профиль?» – эта статья подскажет вам не только какой профиль будет самым красивым, но и какое окно будет самым тёплым

Почему лопаются стеклопакеты? Не от мороза ли? И что надо предусмотреть во избежание данных ЧП? Ответы на эти вопросы ждут вас на нашем сайте

Как лучше остеклить балкон или лоджию? Чтобы там было тепло и уютно? Советы бывалых домохозяев ищите по ссылке: https://oknanagoda.com/balkony-lodzhii/osteklenie/luchshe-osteklit-balkon.html

А есть ли какие-либо объективные критерии, характеризующие способность стеклопакета противостоять оттоку тепла из помещения? О них мы и расскажем далее в статье на нашем сайте.

Основные виды стеклопакетов

Стеклопакет (СП), являясь основной частью окна, конструктивно состоит из нескольких стекол, соединенных металлическими (промежуточными) рамками. Промежуток между стеклами называется камерой.

Чаще всего используются три основных вида стекольных пакетов:

  • однокамерные — два стекла (внутреннее и наружное);
  • двухкамерные — три стекла (внутреннее, наружное и промежуточное);
  • трехкамерные — четыре стекла (внутреннее, наружное и 2 промежуточных).

Толщина используемых стекол варьируется от 4 до 6 мм. Для остекления объектов с повышенными требованиями к прочности (большие ветровые нагрузки) могут применяться стекла толщиной 8-10 мм. Промежуток между стеклами может варьироваться — от 8 до 36 мм. Диапазон толщин стеклопакетов составляет от 14 до 60 мм.

СТП самого стекла сравнительно мало ввиду его большой теплопроводности. Для уменьшения теплопотерь межстекольное пространство, заполняется воздухом или инертным газом (аргоном Ar, криптоном Kr, азотом N2). Газонаполненные камеры дают основной вклад в повышение СТП стеклопакета Rсп. Существенно повысить значение Rсп удается также с помощью создания вакуума в камере, но это приводит к резкому удорожанию конечного изделия.

Приведенное сопротивление теплопередаче окон

Для расчетов характеристик проектируемых и строящихся объектов используется величина, названная приведенным сопротивлением теплопередаче оконных блоков Rпр. Это усредненная величина, в которой учтены СТП пакета стекол, оконного профиля и крепежных элементов. Чем больше Rпр, тем меньше через окно утекает тепла “на сторону”.

Производители, предлагающие свою продукцию для работ по остеклению, обязаны обеспечивать теплоизоляционные параметры в соответствии с ГОСТ 30674-99, действие которого распространяется на оконные блоки из ПВХ профилей. Этот документ задает требуемые уровни Rпр для различных конструкций стеклопакетов на базе трехкамерных профилей.

Типовые значения Rпр представлены в следующей таблице:

СТЕКЛОПАКЕТЫ Диапазон Rпр
Для 1-камерных 0,35 — 0,63
Для 2-х камерных 0,49 — 0,56
Для 2-х камерных с отражающим покрытием 0,57 — 0,72

Значения Rпр регламентированы для оконных проемов, у которых светопропрозрачная часть составляет 70% от общей площади. В случаях использования профилей другой конструкции (например, иное количество камер) Rпр определяется экспериментально на специальном оборудовании.

Проведение расчетов: самостоятельно или обратиться к специалисту?

Необходимо сказать, что определить сопротивление теплопередаче окон самостоятельно, не имея опыта и навыков в этом деле, не так просто. Лучший и наиболее оптимальный вариант – обратиться за помощью к специалисту, который наверняка знает, как именно проводить расчеты, чтобы в результате не было никаких ошибок, а погрешности были минимальными. Если у вас нет знакомых в строительной отрасли, а финансовое положение не позволяет оплатить услуги профессионалов, то вы можете воспользоваться специальным калькулятором, который в режиме реального времени поможет определить, насколько соответствуют характеристики изделия приведенному сопротивлению. Кроме того, методика расчетов в таком случае весьма проста и понятна. Разобраться в ней можно самостоятельно, поэтому определить площадь однородных зон для каждого конкретного элемента можно будет достаточно быстро. Практически все теплотехнические свойства представлены в тематических таблицах и вырезках из нормативно-технической документации. Они размещены в свободном доступе в Интернете на различных форумах и строительных порталах.


Схема размещения термопар и тепломеров на образце оконного блока (по ГОСТу).

Коэффициент сопротивления теплопередаче стеклопакетов

В сопроводительной документации на готовое изделие Rcп часто называют коэффициентом сопротивления теплопередаче (КСТП), который равен количеству тепла, проходящему через один квадратный метр площади стеклопакета при разнице температур в один градус (Цельсия или Кельвина) Физический смысл и размерность этих величин (СТП и КСТП) абсолютно идентичны. ГОСТ 24866-99, который имеет статус межгосударственного стандарта, для этого параметра не использует слово “коэффициент”.

В Таблице 4 этого документа представлены основные требования к Rcп:

Стеклопакет Число камер Rcп, не менее,
м2* 0С/Вт
Общестроительного назначения 1-камерный
2-х камерный
0,32
0,44
Ударостойкий 1-камерный
2-х камерный
0,32
0,44
Солнцезащитный 1-камерный
2-х камерный
0,32
0,44
Энергосберегающий 1-камерный
2-х камерный
0,58
0,72
Морозостойкий 1-камерный
2-х камерный
0,58
0,72
Шумозащитный 1-камерный
2-х камерный
0,32
0,44

Значение теплопроводности окна.

Теплопроводностью пластиковых окон называют способность закрытого окна удерживать в помещении определенное количество тепла. Для обозначения данной способности оконной конструкции, принято использовать термин «коэффициент теплопроводности». Чем он меньше – тем больше окна сохраняют тепла.

Читайте также:
Стильный дизайн квартиры в бело-серых тонах

Что же оказывает влияние на теплопроводность окон из пластика? Главным техническим элементом, напрямую оказывающее влияние на значение теплопроводности является камерность стеклопакета. Дело в том, что существует определенная зависимость: при увеличении количества камер теплопроводность пластикового окна уменьшается, а это, в свою очередь, положительно сказывается на количестве тепла, удерживаемом в помещении оконной конструкцией.

Дополнительные способы уменьшения теплопотерь

Внушительного снижения теплопотерь удается достичь с помощью специальных покрытий. Сверхтонкий слой окислов металла наносится на внутреннюю поверхность стекла, что гарантирует его сохранность в процессе эксплуатации. Эта дополнительная пленка полностью пропускает видимый свет, но при этом выступает своеобразным “зеркалом”, отражающим электромагнитное излучение инфракрасного (ИК) диапазона. Как известно из физики, нагретые тела значительную часть своей внутренней энергию излучают в этой области спектра.

Различают два вида стекол с дополнительным напылением:

  • k-стекла — получают нанесением оксидов металлов. Покрытие толщиной 0,4-0,5 мкм практически не влияет на светопропускание окна;
  • i-стекла — это технология сложнее, а значит стекла получаются дороже. Пленка получается двойным напылением в вакууме нескольких чередующихся слоев: между оксидных слоев наносятся слои чистого металла (обычно используется серебро толщиной 10-15 нанометров).

Применение таких покрытий позволяет снизить расходы на отопление на 15-20%.

Как рассчитать теплопроводность стеклопакета

Теплопроводность — это физическая величина, характеризующая способность вещества или тела проводить тепло. Чем ее значение больше, тем быстрее происходит передача тепла от тела с большей температурой к меньшей. То есть коэффициент теплопроводности K является обратной величиной к R0 — СТП, принятому к применению в России.

Чем меньше K, тем лучше теплоизоляционные свойства конструкции. Коэффициент K применяется в стандартах и нормах, разработанных DIN (Институт ФРГ по стандартизации), имеющего статус ведущего органа по стандартизации в Европе.

Для примерных расчетов можно использовать формулу:

K = 1 / R0

Размерность K в системе СИ — [Вт/м2*/ 0С]. Некоторые производители представляют на своих сайтах онлайн-калькулятор, с помощью которого потенциальный покупатель может рассчитать характеристики будущего оконного проема с индивидуальными (“под себя”) параметрами.

Теплопроводность пластиковых окон

Уже давно прошли те времена, когда жилище человека было лишено окна. Как известно из истории окон, сначала для связи с внешним миром использовался проем небольшого размера. С развитием технологий и навыков, оконный проем принял стандартные значения размеров – те, что используются в наше время.
Сегодня в проем, не считая небольшого процента деревянных окон образца советской эпохи, принято вставлять окна современного типа: пластиковые, алюминиевые, либо же деревянные со стеклопакетом. Рассмотрим подробнее первый тип – светопропускающие изделия, основу которых составляет материал ПВХ (поливинилхлорид).

От конструкции пластиковых окон, исполнения, а также от качества установки зависит их гармония с интерьером помещения, безопасность нахождения людей в нем, удобство и срок их службы – это известно всем. Однако как выбрать качественное пластиковое окно, каким критериям по теплопроводности оно должно соответствовать? Об этом и пойдет речь в этой статье.

На сегодняшнем российском рынке оконных конструкций представлен широкий спектр моделей. Практически у каждой свои особенности и характеристики. Поэтому немудрено, что рядовому покупателю не так просто разобраться с тем, какое окно лучше. В этом случае, лучше будет руководствоваться индивидуальными требованиями, предъявляемыми к будущей конструкции. При этом одним из главных, является соответствие климатическим условиям, в которых планируется эксплуатация пластикового окна.

Оно и верно – окна, предназначенные для использования в жилищах южного региона, в силу своих теплопроводных качеств, не подойдут к применению в северной части нашей страны. И наоборот.

Так что же такое теплопроводность окна и как ее значение влияет на сохранение тепла в помещении? Начнем с определения.

Коэффициент сопротивления теплопередачи стеклопакетов

Чтобы зимой и летом у вас в доме всегда был оптимальный климат, вам нужно установить на окнах качественные стеклопакеты. Это позволит сэкономить потребление электрической энергии на:

  • кондиционирование;
  • отопление.

Важно учитывать все критерии выбора подходящих для вас стеклопакетов. Почему при выборе стеклопакетов нужно знать их коэффициент теплопередачи?

Если рассматривать понятие теплопередачи, то она представляет собой передачу теплоты от одной среды к другой. При этом температура в той, которая отдает тепло выше, чем во второй. Весь процесс осуществляется сквозь конструкцию между ними.

Коэффициент теплопередачи стеклопакета выражается количеством тепла ( Вт), проходящем через м2 с разницей температур в двух средах 1 градус: Ro (м2. ̊С/Вт) – это значение действует на территории Российской Федерации. Оно служит для правильной оценки теплозащитных свойств строительных конструкций.

Расчет коэффициента теплопроводности

К или коэффициент теплопроводности выражается количеством тепла в Вт, проходящим через 1 м2 ограждающей конструкции с разницей температур в обеих средах 1 градус по шкале Кельвина. А измеряется он в Вт/м2.

Теплопроводность стеклопакета показывает, насколько эффективными изоляционными свойствами он обладает. Маленькое значение k означает небольшую теплопередачу и, соответственно, незначительную потерю тепла через конструкцию. В то же самое время теплоизоляционные свойства такого стеклопакета являются достаточно высокими.

Однако упрощенный пересчет k в величину Ro (k=1/Ro) не может считаться правильным. Это связано с разницей применяемых методик измерения в РФ и других государствах. Производитель представляет потребителям показатель теплопроводности только в том случае, если продукция прошла обязательную сертификацию.

Самая высокая теплопроводность у металлов, а самая низкая у воздуха. Из этого следует, что у изделия, имеющего много воздушных камер, низкая теплопроводность. Поэтому оно оптимально для пользователей, использующих строительные конструкции.

Таблица сопротивления теплопередаче стеклопакетов

п/п Заполнение светового проема R, м^(2)·°С/Вт
Материал переплета
Дерево или ПВХ Алюминий
1 Двойное остекление в спаренных переплетах 0.4
2 Двойное остекление в раздельных переплетах 0.44
3 Тройное остекление в раздельно-спаренных переплетах 0.56 0.46
4 Однокамерный стеклопакет ( два стекла ) :
обычного (с расстоянием между стекол 6 мм) 0.31
с И – покрытием (с расстоянием между стекол 6 мм) 0.39
обычного (с расстоянием между стекол 16 мм) 0.38 0.34
с И – покрытием (с расстоянием между стекол 16 мм) 0.56 0.47
5 Двухкамерный стеклопакет ( три стекла ):
oбычного (с расстоянием между стекол 8 мм) 0.51 0.43
oбычного (с расстоянием между стекол 12 мм) 0.54 0.45
с И – покрытием одно из трёх стекол 0.68 0.52
Читайте также:
Элементы дымоходов

*Основные ( популярные ) типы стеклопакетов выделены красным цветом.

Технические характеристики стеклопакетов

Количество камер изделия влияет на теплосопротивление стеклопакета даже, если стекла имеют одинаковую толщину. Чем больше в конструкции предусмотрено камер, тем она будет более теплосберегающей.

Последние современные конструкции отличают более высокие теплотехнические характеристики стеклопакетов. Чтобы добиться максимального значения сопротивления теплопередаче, современные компании-производители оконной индустрии заполнили камеры изделий с помощью специального наполнения инертными газами и нанесли на поверхность стекла низкоэмиссионного покрытие.

Надежные компании-производители светопрозрачных конструкций ставят коэффициент сопротивления теплопередаче стеклопакета в зависимость не только от качества самой конструкции, но и от применения особых технологических операций в процессе изготовления продукции, например, нанесения специального магнетронного, солнцезащитного и энергосберегающего покрытия на поверхность стекла, специальных технологий герметизации, заполнения междустекольного пространства инертными газами и т.п.

Перенос тепла в такой современной конструкции между стеклами происходит благодаря излучению. Эффективность сопротивления теплопередачи при этом увеличивается в 2 раза, если сравнивать данную конструкцию с обычной. Покрытие, обладающее теплоотражающими свойствами, способно намного снизить теплообмен лучей, происходящий между стеклами. Используемый для заполнения камер аргон позволяет уменьшить теплопроводность с конвекцией в прослойке между стеклами.

В результате газовое наполнение вместе с низкоэмиссионным покрытием увеличивают сопротивление теплопередаче стеклопакетов на 80%, если сравнивать их с обычными стеклопакетами, которые не являются энергосберегающими.

Тенденции, наметившиеся в оконной индустрии

Стеклопакет, занимающий не менее 70% от оконной конструкции, был усовершенствован, чтобы максимально снизить теплопотери через него. Благодаря внедрению в производство новых разработок, на рынке появились селективные стекла, имеющие специальное покрытие:

  • К-стекло, характеризующееся твердым покрытием;
  • i-стекло, характеризующееся мягким покрытием.

На сегодняшний день все больше потребителей предпочитают стеклопакеты с i-стеклами, теплоизоляционные характеристики которых выше, чем у К-стекол в 1,5 раза. Если обратиться к данным статистики, то продажи стеклопакетов с нанесенными теплосберегающими покрытиями увеличилось до 70% от объема всех продаж в США, до 95% в Западной Европе, до 45% в России. А значения коэффициента сопротивления теплопередаче стеклопакетов варьируется от 0.60 до 1.15 м2 *0СВт.

О тепловой эффективности стеклопакетов

Ниже представлены основные факторы, которые влияют на теплозащитные характеристики стеклопакетов. Эти факторы нужно принимать во внимание при проектировании, заказе и изготовлении стеклопакетов для светопрозрачных конструкций зданий.

Конструкция стеклопакета

Обычно стеклопакет состоит из двух или трех листов стекла, которые имеют одинаковую ширину и высоту. При этом толщина стекол может быть как одинаковой, так и различной. Эти стекла устанавливаются на заданном расстоянии друг от друга и склеиваются вместе по их кромкам. Поэтому их называют клееными стеклопакетами [1]. Между стеклами образуется герметичная полость – камера стеклопакета (рисунок 1).

Рисунок 1 – Конструкция стеклопакета

Эта камера содержит сухой воздух или, иногда, инертные газы аргон или криптон. При этом никакого вакуума в этой полости не создается, как это иногда ошибочно считают.

(О действительно вакуумных стеклопакетах см. здесь .)

[ссылка на статью 18-03-03 о вакуумных стеклопакетах]

Дистанционная рамка, которая отделяет листы стекол друг от друга, имеет определенное влияние на теплоизолирующие свойства стеклопакета и, особенно, на точку росы на кромках стеклопакета. Часто дистанционные рамки называют спейсерами от соответствующего английского термина «spacer». Ниже для краткости и мы будем их так называть.

Изготовление стеклопакета

Далее для простоты будем рассматривать только стеклопакеты из двух стекол. Такие стеклопакеты называют однокамерными [1]. Два стекла стеклопакета склеиваются вместе с применением двухстадийной системы герметизации.

Первичная герметизация

Эта система заключается в следующем. Между стеклами по всему периметру кромок устанавливается спейсер и непрерывная лента бутилового герметика. Два стекла оказываются склеенными друг с другом. Бутиловый герметик, который называют первичным герметиком, предотвращает проникновение водяных паров внутрь стеклопакета, а также диффузию наружу инертных газов, если они применяются.

Осушение воздуха

Спейсер содержит зернистый осушающий материал, который называют влагопоглотителем [1], диссикантом или молекулярным ситом. Этот влагопоглотитель через небольшие отверстия в спейсере поддерживает воздух внутри стеклопакета постоянно сухим (см. рисунок 1).

Удаление покрытий с кромок

В процессе герметизации стеклопакета очень важно, чтобы сторона стекла с энергосберегающим покрытием была направлена внутрь стеклопакета. Эти покрытия перед нанесением первичного герметика механически удаляют по всей кромке стекла. Это важно, чтобы обеспечить высокую адгезию герметика к стеклу и, следовательно, надежную герметизацию стеклопакета. Кроме того, внутри стеклопакета это покрытие оказывается надежно защищенным от погодных и механических воздействий.

Вторичная герметизация

Затем выполняют вторичную герметизацию по всему периметру первичной герметизации. Для вторичной герметизации обычно применяют двухкомпонентные герметики, полисульфидные или полиуретеновые.

Если кромки стеклопакетов будут подвергаться воздействию ультрафиолетового излучения (например, при структурном остеклении), то вместо обычных герметиков применяют стойкие к ультрафиолету силиконовые герметики.

Теплозащитная функция стеклопакета

Три фактора определяют передачу тепла через стеклопакет:

  • тепловое излучение;
  • теплопроводность;
  • конвекция.
Читайте также:
Электролопата для уборки снега Экзотический гаджет или полезный инструмент?

Каждое тело излучает в зависимости от своей температуры электромагнитные волны теплового излучения. Это излучение не требуют никакой среды для своего распространения (рисунок 2).


Рисунок 2 – Механизмы потери тепла через однокамерный стеклопакет

Теплопроводность – это поток тепла в материальной среде в результате разности температуры, а, именно – всегда от более горячего к более холодному.

Конвективный поток – это поток частиц газа во внутренней полости стеклопакета вследствие разности температуры между его внутренним и наружным стеклами. Эти частицы опускаются вдоль холодного стекла и снова поднимаются вверх вдоль теплого стекла. В результате газ циркулирует, создавая поток тепла от теплого стекла к холодному (см. рисунок 2).

Обычный однокамерный воздушный стеклопакет из стекол без покрытий, теряет около двух третей тепла из комнаты за счет излучения между двумя стеклами и одну треть – за счет теплопроводности и конвекции.

Пути повышения тепловой эффективности стеклопакета

Повышение тепловой эффективности стеклопакета может достигаться следующими тремя путями:

  • Передача тепла за счет излучения может быть почти полностью исключена (до 98 %) путем применения стекол со специальными покрытиями
  • Заполнение полости стеклопакета аргоном или криптоном снижает потери тепла за счет теплопроводности
  • Конвекция может быть снижена путем оптимизации ширины внутренней полости стеклопакета, то есть расстояния между его стеклами.

Низкоэмисионные покрытия

В современных стеклопакетах, по крайней мере, одно из стекол обычно имеет низкоэмиссионное покрытие, так называемое, покрытие low-E. Эти покрытия способны отражать до 98 % длинноволнового теплового излучения и, тем самым, почти полностью предотвращать потери тепла за счет излучения. Это дает улучшение теплозащитных свойств стеклопакета примерно на 66 % по сравнению со стеклопакетом из обычных стекол без покрытий [2, 3].

Инертные газы

Снижение потерь тепла стеклопакета за счет теплопроводности может быть достигнуто путем применения в его внутренней полости вместо сухого воздуха инертного газа (аргона или криптона). Инертные газы имеют значительно более низкую теплопроводность, чем воздух и поэтому снижают поток тепла через стеклопакет. Применение инертных газов в стеклопакетах имеет как преимущества, так и недостатки, поэтому они требуют отдельного рассмотрения. Далее речь пойдет только о стеклопакетах с воздушной внутренней прослойкой.

Ширина внутренней полости стеклопакета

В зависимости от применяемого в стеклопакете вида газа изменяется оптимальное расстояние между стеклами, которое обеспечивает минимальную передачу тепла за счет конвекции. В случае воздуха это расстояние составляет 14-16 мм [2, 3].

Спейсеры

Пути повышения теплозащитной эффективности стеклопакета, которые были изложены выше, относятся в основном к центральной части стеклопакета. Конструкция и материал спейсера значительно влияют на теплозащитные свойства краев стеклопакета.

Алюминиевые спейсеры

До недавнего времени, почти во всех стеклопакетах применялись алюминиевые спейсеры (рисунок 3). Однако, известно, что алюминий отличается весьма высокой теплопроводностью. Поэтому, по мере роста требований к теплозащитным характеристикам стеклопакетов, были разработаны альтернативные конструкции спейсеров с применением других материалов. Вместе с тем, стеклопакеты с алюминиевыми спейсерами все еще остаются вполне стандартизированной продукцией [1, 3].


Рисунок 3 – Алюминиевый спейсер

Спейсеры из нержавеющей стали

Очень тонкие профили из нержавеющей стали, теплопроводность которой в несколько раз ниже, чем у алюминия, является самой простой заменой алюминиевым спейсерам (рисунок 4).


Рисунок 4 – Спейсер из нержавеющей стали

Металлопластиковые спейсеры

Пластиковый спейсер обеспечивает высокую тепловую изоляцию, но не обладает высокой стойкостью к диффузии газов в течение всего срока службы стеклопакета. Поэтому применяют комбинацию пластика с газонепроницаемой нержавеющей сталью или алюминиевой фольгой.

Термопластичные спейсеры

Эти спейсеры получают горячим экструдированием из специального пластмассового состава, который помещают между двумя стеклами при изготовлении стеклопакета. После охлаждения эти спейсеры обеспечивают требуемую механическую прочность, а также необходимое сопротивление газовой диффузии. Диссикант в буквальном смысле «замешан» внутри этой пластической массы.

Коэффициент теплопередачи U

Эта величина характеризует потери тепла через соответствующий компонент наружной оболочки здания – стену, окно, стеклопакет. Она показывает, сколько джоулей тепла проходит за 1 секунду через 1 квадратный метр при разности температуры между наружной и внутренней поверхностью 1 градус Кельвина (или Цельсия). С учетом того, что 1 Вт = 1 Дж/с, размерностью этой величины является Вт/(м 2 ·К).

Коэффициент теплопередачи стеклопакета Ug

Величина Ug, которую применяют в зарубежных технических условиях на стеклопакеты [3], является коэффициентом теплопередачи центральной части стеклопакета без учета краевых эффектов на его кромках. Эти краевые эффекты обычно заключаются в более низких теплозащитных характеристиках кромок по сравнению с характеристиками центральной части.

Коэффициент теплопередачи Ug для наклонных стеклопакетов

Обычно коэффициент теплопередачи Ug применяется для описания остекления, которое располагается вертикально. Установка стеклопакета наклонно меняет механизм конвективного теплообмена внутри стеклопакета и поэтому может значительно снижать его величину. Чем больше наклон стеклопакета, тем быстрее происходит циркуляция воздуха в его внутренней полости и тем более снижается его коэффициент теплопередачи (рисунок 5).


Рисунок 5 – Влияние ориентации стеклопакета
на коэффициент теплопередачи Ug:

90º: Ug = 1,1 Вт/(м 2 ·К);
45º: Ug = 1,6 Вт/(м 2 ·К);

Точка росы и конденсат

В любом воздухе всегда в той или иной мере присутствует влага. Чем теплее воздух, тем больше влаги он может содержать. Когда воздух остывает, количество влаги в нем остается прежним, а его относительная влажность возрастает. Температура точки росы – это температура, при которой относительная влажность воздуха достигает 100 %. Поэтому на стекле с такой температурой выпадает конденсат влаги в виде мельчайших капель воды: стекло «запотевает».

Конденсат, в принципе, может выпадать на различных поверхностях стеклопакета (рисунок 6):

  • во внутренней полости стеклопакета (поверхности #2 и #3);
  • на поверхности стекла внутри помещения (поверхность #4);
  • на наружной поверхности стеклопакета (поверхность #1).
Читайте также:
Составные части гидроаккумулятора


Рисунок 6 – Нумерация поверхностей стеклопакета

Конденсат во внутренней полости стеклопакета

Это явление редко происходит с современными стеклопакетами, так как они хорошо герметизируются и наполнены осушенным воздухом или газом. Если конденсат выпал внутри стеклопакета, чаще – на более холодной поверхности #2, то это говорит об его разгерметизации. Такой стеклопакет требует замены.

Конденсат на стекле внутри помещения

Выпадение конденсата на стекле внутри помещения может происходить на одинарных стеклах или однокамерных стеклопакетах без энергосберегающих покрытий. В холодное зимнее время температура внутреннего стекла часто бывает ниже точки росы воздуха внутри помещения. Теплый воздух быстро охлаждается вблизи окна и осаждает влагу на холодном стекле.

У современных стеклопакетов со специальными теплозащитными покрытиями, да еще, вдобавок, заполненными инертными газами, температура внутреннего стекла может оставаться достаточно теплой даже в морозы, и поэтому стекла внутри помещений запотевают редко. Если запотевание случается только при экстремально низкой наружной температуре, то это может считаться вполне приемлемым.

Если относительная влажность внутреннего воздуха очень высокая, например, в кухне при приготовлении пищи или мойке посуды, а также рядом с горячей ванной или душем, то стекла даже хороших стеклопакетов могут запотевать. Простое решение этой проблемы – быстрая полная смена воздуха, например, проветриванием.

Конденсат на наружной поверхности стеклопакета

Это явление возникло с появлением современных эффективных стеклопакетов. Оно особенно заметно в ранние утренние часы, в случае, если содержание влаги в течение ночи резко возросло.

Высокие термоизоляционные свойства этих стеклянных поверхностей не пропускают тепло изнутри наружу, поэтому наружное стекло остается очень холодным. Солнечные лучи начинают быстро прогревать наружный воздух, а поверхность #1 стеклопакета остается еще холодной. Это может приводить к конденсации влаги на этом наружном стекле. Это явление не является признаком дефектного стеклопакета. Наоборот, это говорит о его высоких теплоизоляционных характеристиках.

1. ГОСТ 24866–2014 Стеклопакеты клееные. Технические условия

2. Материалы сайта www.sunguardglass.eu

3. EN ISO 10077-1:2017 Thermal performance of windows, doors and shutters – Calculation of thermal transmittance – Part 1: General

[Ссылка источника 2:

Более подробно о фасадных системах вы сможете узнать тут.

ООО «Алюком»
г. Москва, ул. Нагатинская, д. 16, стр. 9, офис 2-5

Тел.: +7 (495) 268 0444
E-mail: info@alucom.ru

Производство и склад: Калужская обл., г. Малоярославец, ул. Калужская, 64.

Сопло для пескоструя: правила выбора и изготовление своими руками

Сопло, которое используется для оснащения пескоструйного аппарата, является важнейшим элементом конструкции такого устройства. Только правильно подобранное сопло позволит вам наиболее эффективно использовать пескоструйный аппарат по его прямому назначению: для очистки различных поверхностей от загрязнений, старых покрытий, следов коррозии, их обезжиривания и подготовке к дальнейшей обработке.

Для каждого применения можно подобрать сопло определенного диаметра, в зависимости от фракции используемого песка

Задачи, которые решает сопло пескоструйное, заключаются в сжатии и разгоне до требуемой скорости смеси, состоящей из воздуха и абразивного материала, а также в формировании рабочего пятна и его насыщении абразивом, воздействующим на поверхность обрабатываемого изделия. В зависимости от размеров поверхности, которую необходимо подвергнуть пескоструйной обработке, в соплах могут быть выполнены отверстия различных типов. Так, для обработки узких поверхностей применяют сопла с одинаковым диаметром по всей длине, а для очистки поверхностей большой площади используют изделия, отверстия в которых имеют больший диаметр на входе и выходе (тип «Вентури», разработанный в середине прошлого века).

Сущность пескоструйной обработки

Пескоструйная обработка предполагает воздействие на различные поверхности абразивным материалом. В качестве последнего используются песок, дробь, карбид кремния, мелкие шарики из стекла и т.д.

Пескоструйная обработка – это механическое воздействие на поверхность мелких твердых частиц

Перед началом обработки абразив помещают в герметичный бункер. По основному шлангу аппарата под большим давлением подается воздух, поступающий от отдельного компрессора. Проходя мимо отверстия заборного рукава, поток воздуха создает в нем вакуум, что и способствует всасыванию в основной шланг абразива. Уже смешанный с абразивом воздух поступает к пистолету, основным элементом которого является сопло пескоструйное, через которое абразивная смесь подается на обрабатываемую поверхность.

Схема участка пескоструйной обработки

Как уже говорилось выше, для выполнения пескоструйной обработки могут использоваться различные типы абразивных материалов. Выбор здесь зависит от типа поверхности, которую необходимо очистить. Так, обработка с использованием песка эффективна в тех случаях, когда необходимо удалить слой старой краски с бетонной поверхности, очистить кирпичные стены от остатков цемента, подготовить металлические детали к дальнейшей покраске. Такие абразивы, как пластик или пшеничный крахмал, успешно применяют в судостроительной, автомобильной и авиастроительной отраслях, с их помощью эффективно удаляют старые покрытия с композиционных материалов.

Конструктивные особенности сопла для пескоструйного аппарата

Основными параметрами сопла, устанавливаемого на пескоструйный аппарат, являются:

  • диаметр и тип отверстия;
  • длина;
  • материал изготовления.

Абразивоструйные сопла различных конфигураций

Диаметр отверстия в сопле, которое фиксируется на пескоструйном аппарате посредством специального соплодержателя, выбирается в зависимости от того, какой производительностью должно обладать устройство. Производительность любого пескоструйного аппарата – как серийного, так и сделанного своими руками – зависит от мощности струи или объема воздуха, который в состоянии пропускать сопло в единицу времени.

Мощность струи, которую формирует сопло, прямо пропорциональна объему воздуха, который проходит через него в единицу времени. Соответственно, чтобы увеличить мощность пескоструйного аппарата, необходимо сделать в его сопле отверстие большего диаметра. Например, можно оценить мощность сопел, отверстия в которых имеют разные диаметры. Если сопло, диаметр которого соответствует 6 мм (1/4 дюйма), имеет мощность, равную 100%, то изделия с отверстиями больших диаметров будут отличаться следующей величиной данного параметра:

  • 8 мм (5/16 дюйма) – 157%;
  • 9,5 мм (3/8 дюйма) – 220%;
  • 11 мм (7/16 дюйма) – 320%;
  • 12,5 мм (1/2 дюйма) – 400%.
Читайте также:
Шкаф на мансарду под крышу (33 фото): мансардные модели со скатом и скошенным углом

Чтобы еще лучше ориентироваться в мощности сопла с тем или иным диаметром внутреннего отверстия, можно принять во внимание, что изделия, диаметр в которых составляет 6 мм (1/4 дюйма), способны обеспечить среднюю мощность струи, равную 30 м 3 /час.

Таблица позволяет примерно оценить влияние диаметра сопла и давления воздуха на производительность и расход абразива

Если вы не собираетесь изготавливать сопло для аппарата пескоструйной обработки своими руками, то следует иметь в виду, что изделия, выпускаемые серийно, имеют стандартные диаметры отверстий, равные 6, 8, 10 и 12 мм.

На выбор такого параметра сопла, как его длина, оказывает влияние степень загрязненности очищаемой поверхности. Для пескоструйной обработки поверхностей, которые имеют незначительные загрязнения, выбираются более короткие сопла (7–8 см). Если же необходимо обработать поверхность, на которой имеются сложные загрязнения, длина сопла должна быть значительной (до 23 см). Более короткие сопла, устанавливаемые в стандартный соплодержатель, используются и в тех случаях, когда обработке требуется подвергнуть труднодоступные места.

Сопла, диаметр которых не изменяется по всей их длине, позволяют обеспечить скорость выхода абразивного материала 320 км/час, при этом давление смеси из воздуха и абразива, поступающей из такого сопла, составляет 6 атм. Сопла с каналом «Вентури» формируют струю абразивной смеси, скорость движения которой может доходить до 720 км/час. Понятно, что сопла с внутренними отверстиями такого типа повышают эффективность пескоструйной обработки.

Очевидно, что площадь потока у сопла типа VENTURI значительно больше, чем у обычного прямолинейного

Использование сопел с внутренними отверстиями, выполненными по типу «Вентури», позволяет предприятиям и специализированным компаниям не только увеличить производительность своего труда, но и значительно повысить качество выполняемой обработки. Что важно, применение изделий с такими каналами не требует приобретения специальных абразивов и не приводит к увеличению расхода сжатого воздуха.

Если сопла с отверстиями обычного типа для пескоструйных аппаратов можно сделать своими руками (хотя это и сложно), то изделия с каналом «Вентури» качественно изготовить в домашних условиях, не располагая специальным оборудованием, практически невозможно.

Устройство сопла пескоструйного с каналом Вентури: d — внутренний диаметр; D — заходной диаметр; Т — присоединительная резьба; L — длина сопла

Для изготовления сопел, в том числе и своими руками, могут быть использованы различные материалы, от выбора которых зависит долговечность изделия. Так, в зависимости от материала изготовления сопла для аппаратов пескоструйной обработки обладают следующей долговечностью:

  • керамические изделия, которые в домашних условиях делают из обычных свечей зажигания, – 1–2 часа;
  • сопла из чугуна – 6–8 часов;
  • изделия, для производства которых был использован карбид вольфрама, – 300 часов;
  • сопла, изготовленные из карбида бора, – 750–1000 часов.

Если в качестве абразивного материала в пескоструйном аппарате используется не песок, а стальная дробь, то долговечность сопел любого типа увеличивается в 2–2,5 раза.

Как правильно выбрать сопло для пескоструйной обработки

Выбирая сопло для своего пескоструйного аппарата, учитывайте тот факт, что самые недорогие изделия являются и самыми недолговечными. Такие сопла в итоге обойдутся вам дороже качественной продукции, особенно если вам предстоит выполнить большой объем работ.

Пескоструйные износостойкие сопла из карбида вольфрама

Для бытовых целей подходят сопла из чугуна и керамики. Многие домашние умельцы даже самостоятельно изготавливают керамические сопла, используя для этого отработанные свечи зажигания. Для того чтобы из такой свечи сделать сопло, достаточно удалить из ее керамической оболочки металлический электрод.

Используя для пескоструйного аппарата чугунные и керамические сопла, следует иметь в виду, что из-за своего ускоренного износа они увеличивают расход как воздуха, так и абразива, поэтому их не рекомендуется применять при выполнении масштабных работ. Дорогостоящие сопла из карбида бора и карбида вольфрама отличаются не только высочайшей долговечностью, но также и тем, что их можно использовать практически с любым абразивным материалом, за исключением карборунда и окиси алюминия. Этим, собственно, и объясняется достаточно высокая стоимость таких сопел для пескоструйного аппарата, которые способны прослужить очень долго, не теряя своих характеристик, не увеличивая расход абразивного материала и воздуха.

Применение таких изделий целесообразно во всех ситуациях, когда требуется выполнить большой объем работ по очистке различных поверхностей.

Все о соплах для пескоструя

  1. Особенности
  2. Обзор видов
  3. Критерии выбора
    • Производительность
    • Давление воздуха
    • Удельный расход абразива
    • Материал
  4. Как сделать своими руками?

Простые сопла для пескоструя являются важной и несложной деталью. При желании их можно изготовить своими руками. Поэтому будет полезным узнать все о соплах для пескоструя.

Особенности

Пескоструйный аппарат – давно и успешно применяемый прибор, который используется для очистки поверхности от загрязнений. Его основное назначение – создание мощной подачи абразивной смеси. Самый простой соплодержатель можно изготовить своими руками в домашних условиях, но современные конструкции не только формируют факел (направленную струю из воздуха и песка), но и подготавливают ее, экономно расходуют, придают необходимые для конкретной поверхности характеристики.

Применять такие аппараты можно в самых различных ситуациях – от чистки стен домов до удаления ржавчины с металлической плоскости, и даже для выполнения гравировки на стеклянной поверхности. Отсюда и многообразие моделей, простых, но изготовленных в разных размерах. Необходимость работы с определенным материалом, создания должного напора диктует требования к габаритам аппарата и составным элементам. Один из них – сопло для пескоструя.

Читайте также:
Соединение алюминиевых проводов между собой: виды соединений, как облудить и спаять

Важность этой детали сложно переоценить, поскольку именно она увеличивает скорость потока смеси из агрегата, формирует факел. Она подбирается по целевому назначению и рабочим характеристикам, а также соплодержателю, который иногда мастерами причисляется к составным частям функционального раструба.

Несмотря на схожесть конструкции (состоит из корпуса, резьбы для надежного крепления, конфузора и диффузора), разделяется на разные виды по:

  • материалу корпуса (от этого зависит его прочность и длительность эксплуатации) и способу фиксации к рукоятке – гайке или хомуту;
  • диаметру отверстий в конфузоре (выбирается по показателю производительности пескоструя);
  • углу расширения диффузора;
  • форме выходного отверстия (круглое или овальное, определяемое формой и размерами очищаемого предмета).

Отдельно от простого модельного ряда стоит сопло Вентури. Его невозможно сделать в домашних условиях, поскольку это не позволит сделать ступенчатое изменение сечения.

Важное отличие, заслуживающее пристального внимания при выборе, – материал изготовления. Зная некоторые особенности, можно выбрать подходящее для достижения цели сопло, которое прослужит более длительное время.

Обзор видов

Типы функционального приспособления могут подразделяются на:

  • напорные (предназначены для большой площади, которую нужно обработать);

  • инжекторные (идеальные для работ непромышленного масштаба).

В свою очередь инжекторные подразделяются на:

  • всасывающие;

  • вакуумные (абразив не остается на поверхности, а всасывается вакуумом обратно);

  • пневматические – оптимальные для проведения работ на значительной площади.

Сопло для пескоструйного аппарата может быть:

  • разного диаметра (как выходное, так и в отверстиях на насадке);
  • круглого или овального сечения;
  • сделано из разных материалов – керамическое, стальное и чугунное, из карбида бора, фтора (до 1 тыс. часов работы) или вольфрама.

В описании следует непременно смотреть на производительность компрессора (это один из факторов правильного подбора наконечника).

Отдельно отстоит сопло Вентури, сложной конструкции и недешевое, но если прямоточное дает скорость подачи абразива не более 340 км, оно обеспечивает показатель почти в два раза больше. При его создании был учтен принцип сопла Лаваля, во многих случаях решающий оптимизацию работы и регуляцию направления извергаемой струи.

Критерии выбора

Функциональное устройство подбирается по масштабности, характеристике очищаемого материала, конструкции (размерам, мобильности), абразивной емкости и компрессору. Некоторые специалисты уверены, что основным критерием служат отверстия насадки, поскольку от них зависит производительность, давление, создаваемое в аппарате. Промышленные установки не могут работать с таким показателем менее 12 мм, а разбег между размерами может колебаться от 6 до 16 мм. Поэтому при выборе нужно учитывать не один, а несколько критериев, и каждый из них остается важным.

Производительность

Основным фактором, от которого зависит производительность агрегата, считается компрессор. Поэтому многие потребители ориентируются на показатель, который производитель указывает в техническом паспорте.

Производительность также зависит от длины используемого шланга и количества имеющихся в подающей системе соединений. Мощность компрессора определяется на выходе. Для этого можно использовать иглу для накачки мячей и манометр, которым контролируют давление в автомобильных шинах.

На производительность аппарата влияет также используемая абразивная смесь. Для прямоточного пескоструя можно применять практически любой тип абразива, а вот для инжекторного годятся только легкофракционнные. Отсюда вытекает и соответствующая насадка.

Глядя на показатель в техпаспорте, можно составить только приблизительное представление о производительности, оптимальным считается давление на выходе в размере 5,5-6 бар.

Есть специальные методы расчета соответствия сопла и абразива. Нельзя забывать, что именно от воздушно-абразивной смеси зависит антикоррозионная защита поверхности, качество обработки и адгезивность по окончании процесса.

Давление воздуха

Зависит от типа применяемого компрессора, Поршневые – самые распространенные, но они подходят для бытового употребления, поскольку обладают небольшой производительностью. Винтовой компрессор позволяет обеспечить не только постоянное давление, но и оптимальные результаты после проведения процесса. Их применяют при использовании рабочего пистолета.

Мощность компрессора может быть разной, но для работы рекомендуют 7-8-атмосферный, который и даст на выходе оптимальные 5,5-6 бар. Это не означает, что компрессор в 9 бар не даст такую же цифру, если шланг будет с большим количеством соединений или неоправданно длинный. Производительность компрессора – количество выдуваемых литров воздуха за 1 минуту. Но давление воздуха может определяться также типом электродвигателя или количеством оборотов в минуту. Время бесперебойной работы не всегда рассматривается как важный критерий, однако от него может тоже зависеть давление воздуха на протяжении нужного срока.

Удельный расход абразива

Зависит не только от мощности электродвигателя, компрессора и конструкции сопла (хотя это очень важные обстоятельства). Теоретически дешевле кварцевого песка не найти абразивного материала, однако количество пыли потребует особого устройства для ее подавления, а это означает постоянное очищение фильтров, что несомненно снизит производительность обработки по времени и результату. Для бетона тоже нужен пылеподавитель, но он не даст никакого эффекта на большую цифру расхода песка из кварца.

Купершлак и никельшлак не только обладают более высокой абразивной способностью и прочностью динамического столкновения. За счет удельной плотности этих отходов в меде- и никелеплавильной отрасли получается гораздо меньший расход и большая эффективность. Никельшлак к тому же и материал для многоразового использования, так что в данном случае экономия с песком не настолько существенна, чтобы не покупать более прогрессивные абразивы.

Материал

Сырье, из которого изготовлена функциональная насадка, оказывает значительное влияние на его продажную стоимость, и некоторые покупатели считают, что для одноразового применения можно купить более дешевое. Сопло действительно выполняет одинаковые функции и если поверхность загрязнения небольшая и объем работы минимальный, можно купить керамическое, которого хватит на 2 часа работы.

Чугунное верно прослужит около 8 часов, а вот вольфрамового достаточно для 300 часов работы.

У каждого из материалов есть свои плюсы и минусы – сталь обладает повышенной чувствительностью к ударам, вольфрам не любит перегрева и уже при 80 градусах способен пойти трещинами. Карбид бора термоустойчив, но его стоимость достаточно высока.

Читайте также:
Чем отстирать кофе на белом

Как сделать своими руками?

Мастера с фантазией и умелыми руками нередко изготавливают насадки для пескоструя самостоятельно, и в этом есть несомненный практический смысл. Покупать насадку для небольшого ржавого пятна на автомобиле или сделать ее своими руками из подручных материалов – разница только в трате денег или времени. На специальных сайтах есть немало видеороликов, на которых доморощенные умельцы с гордостью демонстрируют самодельное несложное устройство из стали или чугуна, автомобильной свечки. Они используют в качестве ресивера газовые баллоны, показывают усовершенствованные модели уже готового пистолета, который чем-то не устраивает в использовании.

Рассмотрим, как можно самостоятельно сделать насадки для пескоструя.

Для изготовления понадобятся:

  • обычная пластиковая бутылка, объем которой не более 1 л;
  • пистолет для продувки и еще один для подкачки шин;
  • для камеры потребуется вентиль.

Процесс изготовления показан на видео.

При наличии чертежа можно собрать даже пескоструйный аппарат, купив его составляющие по отдельности в специализированных магазинах. Однако специалисты по таким работам уверены, что у покупных изделий выше функциональность и производительность. И если речь идет о большом объеме работы, лучше приобрести заводское сопло с хорошими характеристиками – устойчивостью к удару и длительным сроком эксплуатации.

Сопло для пескоструйной обработки: купить или сделать самому

Пескоструйный аппарат применяется для обработки, очистки от загрязнений и шлифовки изделий из металла, дерева, бетона. Конструкция данного устройства не сложна, но обязательно включает несколько основных узлов.

Сопло для пескоструя – это полая трубка с резьбой, предназначена для подачи абразивной смеси на загрязненную поверхность. При желании можно сделать сопло своими руками, хотя самые качественные насадки удастся приобрести только в готовом виде.

Конструктивные особенности сопла для пескоструйного аппарата

Любое пескоструйное сопло на вид напоминает трубу, которая одним концом присоединяется к соплодержателю. Профиль внутреннего отверстия детали обуславливает расход абразивной смеси, ее возможные потери, скорость движения на входе и выходе. От профиля сопла зависит суммарное гидравлическое сопротивление, следовательно, срок службы этой важной детали пескоструйной установки.

Чаще всего встречаются изделия с цилиндрическим внутренним отверстием, которые считаются наиболее простыми по конструкции. Самыми эффективными в работе признаются трубки с двумя коническими участками:

  • входным конфузором, увеличивающим энергию потока воздушно-песчаной смеси;
  • выходным диффузором, повышающим площадь поверхности, проходящей обработку одновременно.

Сопла «Вентури», имеющие лучший профиль внутреннего отверстия, обеспечивают минимально возможные потери воздушно-песчаной смеси. Внутри отверстия есть три связанных участка: кроме двух конических присутствует еще одна цилиндрическая часть, способствующая снижению гидродинамического сопротивления рабочей смеси. Такие трубки позволяют развивать скорость струи абразива до 720 км/час, тогда как обычные устройства с равным по всей их длине диаметром внутреннего отверстия не способны обеспечить скорость потока более 320 км/час.

Готовые серийные сопла имеют стандартные диаметры: 6 мм, 8 мм, 10 мм, 12 мм. Чем больше этот показатель, тем выше будет мощность струи, выпускаемой пескоструйной установкой. Примерная мощность устройства с соплом минимального размера (6 мм) равна 30 куб. м/час.

Входящий диаметр в месте присоединения шланга в стандартной комплектации равен 2,5 или 3,2 см. Насадка соединяется с соплодержателем посредством присоединительной резьбы, либо через накидную гайку и герметизирующую шайбу. Если деталь делают самостоятельно, ее прикрепляют к рукавам (шлангам) хомутами.

Схема подсоединения насадки через шаровой кран к содержанию ↑

Как выбрать сопло для пескоструйного аппарата

Кроме типа отверстия и диаметра, важнейшими техническими параметрами сопла, которые напрямую обуславливают его работу, являются:

  • длина;
  • материал изготовления.

Длину следует подбирать в зависимости от степени загрязненности поверхности, которая подлежит обработке. Если ржавчина, грязь, налет не слишком толстые, можно выбрать короткую деталь (7–8 см). Для поверхностей с трудно выводимыми, сложными, толстыми слоями грязи покупают более длинные трубки (до 23 см).

Для создания сопла своими руками применяют разнообразные материалы и подручные приспособления. Что касается покупных изделий, они тоже могут быть абсолютно разными относительно основы, при этом срок службы будет сильно различаться:

  • керамическое – 2 часа;
  • чугунное – до 8 часов;
  • вольфрамовое – до 300 часов;
  • из карбида бора – до 1000 часов.

Долговечность работы сопла сильно зависит и от типа абразивного материала: так, при замене песка на стальную дробь срок службы возрастает в 2,5 раза. Недорогие изделия обычно выходят из строя быстрее всего, поэтому для выполнения большого объема работ они совершенно не подходят. Для разового бытового применения можно купить керамическое или чугунное сопло, или их комплект, чтобы заменять по мере необходимости. Профессионалы используют детали из карбида вольфрама или бора, которые стоят дорого, но при регулярном использовании намного экономичнее.

Не стоит приобретать стальные сопла – обычная углеродистая сталь мало подходит для изготовления насадок для пескоструйного аппарата, так как очень чувствительна к ударным нагрузкам. Вольфрамовые изделия тоже имеют свой недостаток: они плохо переносят нагрев и при температуре +80…+100 градусов могут пойти трещинами. Детали из карбида бора в этом отношении выигрывают у прочих: они могут испортиться только при +600…+750 градусах, что при пескоструйной обработке маловероятно. Зато цена их достигает 1600–7000 рублей, потому они не слишком доступны непрофессионалам.

Читайте также:
Составные части гидроаккумулятора

Тип каналов пескоструйных сопел

Канал сопла напрямую влияет на скорость разгона абразива и воздушного потока и производительность всей установки. Изделия с прямолинейным (прямоточным) каналом обычно применяются для обработки небольших поверхностей или узких деталей. Самыми эффективными считаются сопла, диаметр которых меняется в зависимости от участка, а не остается постоянным.

Типичным представителем качественных изделий являются сопла «Вентури». Они помогают предприятиям повысить качество и эффективность работы, снизить временные и трудовые затраты, а также себестоимость очистки. Для их применения не нужно менять абразив (подойдет любой) или увеличивать мощность компрессора.

Сопло карбид бора GN UBC

Это – наиболее часто встречающиеся на рынке насадки для пескоструев. Они создают широкий отпечаток частиц абразива, позволяют развить высокую скорость, большую кинетическую энергию. Обычно используются для выполнения значительного объема работ.

Сопло карбид бора GN UBC XL

Длина канала в таких изделиях равна 3,5 см, их производительность на 30–50% выше, чем у предыдущих. Цена насадок довольно высока, а для небольшого объема работ применять их не получится из-за сильного разгона абразивных частиц.

Сопло карбид бора GN DVBC

Технология «Двойное Вентури» задействует эффект эжекции – когда воздух из атмосферы вводится в поток абразива. Диаметр выходного отверстия трубки тут больше, чем в классическом варианте, а струя песка подается с максимальной кинетической энергией. Для использования такого сопла нужна установка с мощным компрессором, длинными рукавами, при этом применять его целесообразно только на больших обрабатываемых поверхностях.

Материал и конструкция внутренней износостойкой вставки

Что касается материала для изготовления внутренней части сопла, он может быть недорогим, но недолговечным, или более качественным, но дорогостоящим. Самыми популярными для этой цели считаются карбиды бора, вольфрама и кремния. Из-за разницы в технологиях обработки этих материалов конструкции сопел могут сильно отличаться друг от друга (например, невозможно сделать из карбида бора цилиндр более 7 см длиной, что обуславливает конструктивные особенности насадок – их приходится делать составными из нескольких элементов). Толщина стенок внутренних втулок также разнится от 3 до 6 мм, что влияет на стойкость к действию абразива.

Конструкция защитной оболочки и качество сборки сопла

Оболочка изделия нужна для фиксирования износостойкой втулки, для защиты ее от быстрого повреждения. Именно на оболочку приходится большая часть ударных нагрузок, поэтому она сильнее подвержена износу. Чтобы срок службы сопла был достаточным, защита должна быть выполнена из абразивостойкого материала, плотно присоединяться к втулке, иметь надежную резьбу.

Существуют такие типы оболочек:

  1. Полиуретановая. Легкая, стойкая к повреждениям абразивом, но вследствие небольшой жесткости резьба ее изнашивается довольно скоро. Из-за плохого сцепления полиуретана с основными материалами для изготовления втулок последние начинают двигаться, воздух проникает между ними, и защитная оболочка портится.
  2. Металлическая (стальная, алюминиевая). Надежно крепит износостойкие втулки, но стойкость к действию абразива у нее низкая. Оболочка страдает от коррозии, слишком тяжелая по весу. Конструкция с такой деталью будет жесткой, но может быстро повреждаться.
  3. Комбинированная (алюминий плюс полиуретан). Считается наиболее популярным вариантом, жесткая, но легкая, имеет резьбу с крупным шагом. Полиуретан в передней части защищает изделие от абразивного износа. Важно только крепко фиксировать оболочку внутри втулки, иначе сопло начнет разрушаться.

Качество сборки тоже играет важную роль в сроке службы всей конструкции. В продаже встречаются низкокачественные сопла, где тело и резьбовая часть запрессованы друг в друга. Чаще всего они быстро портятся, а при давлении выше 8–10 бар и вовсе могут стать причиной травмы человека или поломки всего пескоструйного аппарата. Самая нагруженная часть сопла должна вытачиваться из цельной заготовки, иначе резьбовую зону вырвет во время работы.

Как сделать бюджетное сопло для пескоструя своими руками

Если сопло пескоструйной установки пришло в негодность, можно изготовить замену самостоятельно. Правда, срок непрерывной службы такого изделия будет небольшим, зато стоимость расходных материалов не ударит по бюджету. Основной для сопла может быть керамическая свеча зажигания или старый керамический резистор с внутренним диаметром 2–4 мм.

Порядок работы с резистором таков:

  • шляпки, ножки оторвать кусачками или отпилить болгаркой.
  • взять металлический болт М14, отрезать верх, просверлить сквозное отверстие сверлом №5.
  • углубить отверстие сверлом №8 примерно на 1,4 см.
  • на прижимную гайку М14 сверху приварить широкую шайбу М5, сверлом №8 сделать изнутри конус, поджимающий будущее сопло.

Для создания насадки из свечи зажигания нужно действовать так:

  • при помощи плоскогубцев вытащить из свечи контактный стержень, предварительно прогрев ее газовой горелкой.
  • сточить завальцованную кромку корпуса свечи на станке.
  • выбить керамический изолятор.
  • точилом надрезать края гайки, снять ее.
  • алмазным кругом срезать часть керамического изолятора, где расположен центральный электрод.
  • присоединить к стержню купленный или заранее выточенный из болта переходник с прижимной гайкой.

В продаже есть разнообразные сопла для пескоструев, причем срок службы и производительность самых современных изделий будет в разы выше, чем у самодельных. При регулярном применении пескоструя имеет смысл приобрести качественную деталь в готовом виде, а для разовой работы при наличии необходимого оборудования и навыков можно сделать сопло самому.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: