Фильтр от накипи для водонагревательных приборов

Какой фильтр от накипи для водонагревателей лучший: выбор, нужно ли ставить, виды, устройство, подключение

Фильтр от накипи для бойлера снизит частоту очистки и технического обслуживания бака, и ТЭНа водогрейного оборудования. Умягчители и декальцинаторы подбираются под характеристики воды, есть правила установки, замены.

Фильтр от накипи для водонагревателя ставят для увеличения срока эксплуатации бака и ТЭНа, защиты от зарастания налетом подводки, штуцеров, уменьшения частоты трудоемких и затратных очисток емкости со сливом, промывкой, демонтажем нагревательного элемента.

Нужно ли ставить фильтр перед бойлером

Фильтры перед водонагревателями ставить не обязательно, они не влияют на функциональность, но срок эксплуатации ёмкости и ТЭНа без фильтрующего оборудования сократится.

Чем выше жесткост ь воды, тем выше потребность в декальцинаторе . П ольза особенно заметна при сравн е нии состояния водонагревателя до и после установки умягчителя.

Анод в накопительных электрических бойлерах защищает только от окисления (ржавчина). От известнякового налета, который нельзя игнорировать, устанавливают отдельное устройство. Приборы называют антинакипными, декальцинаторами, предфильтрами, умягчителями, преобразователями.

Задача – не биологическая или механическая очистка воды (улавливание частиц, уничтожение микробов), а изменение структуры H₂O, декальцинация. Но некоторые модели в своем составе имеют ступени (фильтрующие сетки, антибактериальные засыпки) и с перечисленными типами обработки.

Умягчители актуальны для емкостных водонагревателей. Защита от накипи для проточных бойлеров менее необходима – налет не образовывается из-за отсутствия функции хранения жидкости и наличия интенсивного протока. Для прямоточных ЭВН декальцинаторы стандартные, но чаще применяют механическую обработку (фильтр для грубой и/или тонкой очистки), чтобы улавливать частички, которые при сильном напоре быстро изнашивают внутренние элементы.

Фильтр для очистки воды перед установкой бойлера нужен по причинам:

  • накипь с высокими теплоизоляционными свойствами покрывает ТЭН, что чревато:
  • «мокрый» (погружной) нагревательный элемент (таких большинство) перегревается, появляется опасность перегорания, срок службы сокращается. Достаточно 1 – 2 мм известняковой корки для негативных последствий;
  • нагрев заметно замедляется, появляется шум, возрастают затраты на электроэнергию, наблюдается несоответствие работы выставленным значениям;
  • механическое влияние – известняковая корка может провоцировать растрескивание защитного покрытия бака, металл будет ржаветь;
  • забиваются трубы, штуцеры, запорная арматура;
  • налет – благотворная среда для бактерий, чаще всего появляется легионелла с сероводородом, возникает завоздушивание – вода из смесителя выходит рывками;
  • задерживается другой налет (ржавчина и пр.).

С декальцинатором можно меньше обращать внимание на подбор материалов ТЭНа и бака (они по- разному реагируют на накипь).

Какие фильтры ставят на бойлер

В схеме водоснабжения квартиры надо разграничивать преобразователи для питьевой и технической воды.

Перед стиральной машиной, отопительными котлами можно применять умягчители для технической жидкости (полифосфатные), они дешевые и вместе с тем эффективные. Но фильтры для накопительных и проточных водонагревателей – под питьевую воду (магнитные, ионообменные), поскольку ЭВН используются для душа, умывания, мытья посуды.

Есть декальцинаторы с несколькими ступенями, например, магнитный узел и катионообменная смола.

Виды фильтров для бойлеров от накипи (по принципу действия вещества или конструкции):

  • полифосфатные (солевые);
  • магнитные;
  • ионо-, катионообменные.

Надо отличать от стандартных преобразователей системы обратного осмоса (гиперфильтрация), станции умягчения, это оборудование с теми же задачами, но другого типа или более габаритное, основательное .

Перед умягчителями рекомендовано ставить фильтры тонкой очи стки , грубой, биологической от посторонних частиц , микробов – чистота воды увеличит результативность обработки, сохранит работоспособность декальцинатора дольше.

О чищение фильтр ов с зас ып ками не требуется, если в приборе нет ступени с сеточками. Надо менять картридж или досыпать вымывающуюся соль, смолу в среднем раз в полгода. Ресурс, на сколько литров рассчитан модуль и за правка указан в инструкции.

Полифосфатные фильтры

Полифосфатные фильтры для водонагревателя недорогие, но не для питьевой жидкости .

Принцип работы соляных фильтров для бойлера – вода проходит через колбу с «химией» , обогащается полифосфатом натрия, создающ им пленку , на которой не оседает извест ь , вещество не дает кальцию и магнию образовывать накипь . Порошковые полифосфатные преобразователи (дозаторы) п опулярные из-за дешевизны самого прибора и расходников.

Пример солев ого умягчителя с дополнительной механической очисткой – Hydra MS . У лавливает частицы 50 мк, подключение 1/2 ” ; рабочие температуры +2 … +45 ° C , макс. давление – 0, 8 мПа .

Магнитные фильтры

Магнитные преобразователи для защиты от накипи создают поле, препятствующее молекулам Ca оседать, меняется ионная пропорциональность солей, структуры извести распадаются, превращаются в безопасный осадок.

Устройство: трубка или корпус с системой мощных магнитов, потоки полей которых замыкаются через определенные промежутки. Есть разновидности – электро, импульсные.

Принцип магнитного преобразователя накипи: вектор индукции поля перпендикулярный движению жидкости , между полюсами возникают зоны объемной кристаллизации солей. Вместо известковой корки создается тонкодисперсная взвесь, выпадающая в шлам.

  • не загрязняют, полностью экологичные, подходят для питьевых целей, без наполнителей, химвеществ;
  • комплексное действие: предотвращают новой и размягчение старой накипи;
  • простая установка на любые трубы: закрепляются на гайку или врезаются;
  • нет картриджей, не надо периодически менять;
  • длительная служба – нет элементов, которые изнашиваются, утрачивают свойства;
  • компактность.
  • дорогие;
  • важно правильно установить магнитный фильтр, соблюдать расстояние . Чем больший промежу ток до объекта, тем слабее действие.
Читайте также:
Установка мансардных окон. Мансардные окна Velux: особенности, размеры, установка

Основной недостаток недорогих магнитных фильтров для водонагревателей: действие зависит от состава и температуры воды, параметров магнитного поля, времени влияния, протока – можно получить отрицательный результат, если химические характеристики H₂O меняются.

Намагничивание действует 15 – 20 мин., после прохождения прибора структуры молекул восстанавливаются. Повышают результативность электромагнитными приборами, но появится еще один минус – затраты на электричество.

Ионообменные фильтры

Наполнители ион о – и катионообменных умягчителей – специальные смолы. Принцип работы как у полифосфатных фильтров – вода проходит через вещество , насыщается . Меняется структура магния и кальция на молекулярном уровне – способность к образованию накипи минимизируется , а существую щий налет размягч ается.

Преобразователи с ионообменной смолой – оптимальный вариант для водонагревателей, подходят для питьевой и т ехнической воды . Можно использовать и перед бойлерами и перед стиральными машинами. Состав безопасный для человека, полностью р азлагается , в процессе меняет структуру солей.

Часто модуль включает фильтры грубой и тонкой очистки воды (например, нейлоновая сеточка картриджа на 100 мк), отсеки с различными смолами, углем, серебром – вода не только умягчается, но приобретает лучший вкус, полезные качества.

  • нет зависимости от скорости протока, температуры;
  • смолы пищевые, полностью безвредные, гипоаллергенные, нейтральные;
  • есть различные картриджи под характеристики H₂O.
  • высокая цена , в том числе на картриджи или наполнител и, которые надо периодически менять ;
  • смолы вымываются быстре е, чем у полифосфатных умягчителей ;
  • некоторые модели имеют медленную фильтрацию .

Пример популярных ио но о бменных преобразователей бренд а Свод ( есть модификации с ионами серебра ) :

  • Свод-АС 250 – д иаметр подключ е ния 1/2″, ресурс картриджа – 42 тыс. л., рабочая температура +5 … +40 ° С;
  • Свод-АС 100 , характери стики те же, ресурс – 15 тыс. л .

Другие модели , предлага емые рынком:

Большинство декальцинаторов с засыпками в пластиковых корпусах, поэтому трещины и протекания распространенная проблема, есть риск затопления помещений, желательно делать периодический осмотр корпуса.

Как подключить бойлер через фильтр

Порядок размещения следующий. Первый – узел груб ой очистки , механический фильтр грязевик для холодной воды (на горячем отводе тоже есть) это стандарт, ставится по умолчанию всегда изначально при проклад ке труб после отсекающего крана стояка, но перед счетчиком. Дал ее идет подводка к водонагревателю , обратный клапан, затем устройства тонкой очистки и водопо дготовки от накипи.

Надежный вариант – узел с несколькими ступен ями или сегмент с отдельными фильтр ами для очистки воды перед бойлером . Д ополнительн ая механическ ая (предварительная) обработк а рекомендуется всегда – в виде отдельного устройства сначала, а после нее умягчители или в месте в составе одного модуля . Если приборы не рассчитаны на давление в трубопроводе , то перед ними (сразу после счетчика) монтируют понижающие редукторы, их также применяют для стабилизации.

Установка фильтров для водонагревателя , первый вариант : г ибкий шланг к отвод у от стояка (холодн ому ) – умягчитель – шланг к входному штуцеру водонагревателя. Обычно труба в квартире уже подготовлена, то есть врезки не потребуется – сантехнич еский шланг имеет соединительные гайки различных диаметров – ответные штуцеры под них есть на умягчителе й . Потребуется лишь пр икрутить с герметизацией фум- лентой или паклей , длину тру бки можно подоб рать любую .

Другой вариант – в резка в металлическую магистраль , без гибкой подводки. Сложнее , потребуются специальные инструменты, фитинги. Процедура упрощается , если трубы металлопластиков ые , с ними проще работать, можно нарезать ножовкой.

Электров одонагреватели у с тана в л и в аю тся с возможностью о т сечения от холодной подводки , ч то бы пользоваться напрямую , е с л и необход имость в подогреве отпадет, поэтому также можно ставить умягчители до отсечки, если потребуется подготовленная жидкость (чайники, кастрюли буду т чище) в обход бойлера .

Какой фильтр для водонагревателя выбрать, ог раничения, предостережения

Использовать полифосфатные фильтры для электроводонагревателей не рекомендовано, даже если соли пищевые, не желательно с ними взаимодействовать – химия остается на коже, попадает в организм. Солевые приборы – для стиральных, посудомоечных машин (снижают количество моющих средств), отопления.

Магнитные и ио нообменные фильтры от накипи чаще всего применяются при установке электробойлеров , поскольку подходят для питьев ой подготовки .

М агнитные п реобразователи для смягчения воды (простые или электро ) должны находит ься близко, чт о бы менять структ уру жидкости . Как правило, фильтров с достаточной эффективностью в диапазоне до 5000 р. нет, это слабые «муляжи». Мощные устройства дороже , часто в габаритн ом корпусе , электр ические, с настройкой, с несколькими ступенями.

Ионообменные фи льтры для электроводонагревателей лучшие – безопасные , для питьев ых целей, и эффективные.

П олностью от накипи не защит ят никак ие бытовые фильтр ы , для этого необходим ы дорогостоящие системы, станции водоподготовки , обратный осмос . Есть два мнения специалистов :

  • не видят смысла в умягчении не основательными (бытовыми) приборами , считают , что это лишние затраты , так как проблема полностью не решается ;
  • противоположное мнение: польза есть и существенная , но все равно , шлам остается всегда , известняковый налет менее интенсивно, но появляется, бак надо разбирать и чистить , ТЭНы менять, но значительно реже.
Читайте также:
Установка правильной вентиляции в квартире

7 секретов светодиодной филаментной лампочки — преимущества и недостатки.

Внешне все филаментные лампы напоминают обычные лампочки накаливания. Первоначально их даже так и называли – светодиодные лампы накаливания.

Однако ввиду противоречий, которые были запрятаны в таком определении, впоследствии в обиход прочно вошло иностранное слово филаментные. Хотя некоторые предпочитают называть их “ретро лампы”.

В буквальном переводе filament – это нить.

Изначально их выпускали только для декоративных целей, никто и не думал такими “светлячками” делать полноценную замену нормальному освещению. Объяснялось это их маленьким световым потоком.

Однако все изменилось в 2013 году. В этот период сразу несколько китайских компаний вывели на рынок филаментные лампы со световым потоком, эквивалентным обычным лампам накаливания в 60Вт.

При этом по своим некоторым характеристикам они оказались намного лучше не только лампочек Ильича, но и обошли многие модели на привычных светодиодах SMD 2835, SMD 5730 и т.д.

Что же такое этот самый филамент, который запрятан в стеклянной колбочке? Филамент – это стержень из искусственного сапфира или керамики, но чаще всего стекла.

На этом стержне размещаются миниатюрные светодиоды, которые соединяются между собой тончайшей золотой проволокой, образуя таким образом последовательную цепочку.

Это что-то вроде светодиодной ленты в миниатюре.

Светодиоды находятся так близко между собой, что в рабочем состоянии вся нить светится равномерно. Никаких отдельных точек не видно.

На концах стержня припаяны контакты для подачи напряжения.

Сверху вся эта конструкция покрыта специальным составом – люминофором.

Он преобразует синий свет кристаллов светодиодов в белый и отвечает за цветовую температуру источника света (теплый, холодный).

    лимонный оттенок нитей – 4500К (нейтральный белый свет)
    насыщенный желтый цвет – 3000К (теплый белый)
    насыщенный оранжевый – 2350К (еще более теплый)

Таким образом, просто взглянув на лампочку можно тут же узнать ее примерную мощность.

    4 нити – 4 Вт
    8 нитей – 8 Вт

Если их больше, то это означает что внутри либо неэффективный драйвер, либо светодиоды работают в жестком режиме и быстро сгорят.

Даже многие известные бренды на лампочках малой мощности прописывают срок службы в 15 000 часов и более, а для мощных, всего 10 000 часов.

Перегорают они следующим образом. Сначала начинают помаргивать и работать как стробоскоп отдельные нити. Светят то ярко, то тускло.

Затем тусклая фаза становится все дольше, пока лампа окончательно не погаснет и перестанет запускаться.

Все филаментные нити крепятся на стеклянной ножке, со штенгелем в виде трубки.

Помимо крепежных функций, через это устройство откачивают воздух из колбы. Через эту же ножку проходят проводники для подачи напряжения.

Так как лампочка все же светодиодная, никак нельзя обойтись без драйвера.

Его запрятали в цоколе E27.

Драйвер необходим для снижения силы тока до рабочего уровня светодиодов.

Из чего обычно состоит качественный драйвер?

    предохранитель
    выпрямитель диодного моста
    сглаживающие конденсаторы
    микросхема импульсного регулятора тока с элементами обвязки (дроссель, диод, сопротивление и высокочастотный конденсатор)

Как работает вся эта схема? После подачи напряжения ток поступает на цоколь светильника (его нижний контакт).

Проходя через предохранитель (F1), он выпрямляется диодным мостом (DB1). Из переменного тока мы получаем постоянный.

Далее вступают в дело конденсаторы (С1-С2) и дроссель (L1). Они сглаживают ток.

Дойдя до микросхемы (U1), он опять проходит преобразование и превращается в высокочастотные импульсы, которые сглаживаются конденсатором. Пробежав всю эту цепочку, ток наконец проходит через светодиоды филаментов и возвращается обратно в сеть.

Стабилизация тока, протекающего через филаменты, происходит через микросхему регулятора с помощью измерительного сопротивления (RS1).

Кроме обычной прозрачной колбы иногда можно встретить модели со специальным напылением. Оно создает более мягкое и теплое освещение.

Так как светодиоды в процессе работы сильно греются, необходимо оперативно отводить от них тепло. В старых светодиодных лампочках это делается через массивные радиаторы, которые существенно увеличивают габариты изделия.

А в филаментных внутри колбы закачан инертный газ на основе гелия. Это тот, при вдыхании которого, вы начинаете на некоторое время разговаривать как маленький ребенок.

Он то и способствует быстрой передаче тепла от кристаллов к стеклянным стенкам и далее в окружающее пространство.

Без газа и стекла сами стержни разогреваются весьма заметно.

А вот оперативный отвод тепла и большая площадь стеклянных стенок, по сравнению с площадью самих светодиодов, позволяют филаментному источнику света не нагреваться более 50-60 градусов.

В то же время попробуйте дотронуться до включенной лампочки накаливания. Некоторые умельцы из них даже делают инфракрасные обогреватели.

И весьма успешно.

К сожалению, мощность всех филаментных ламп ограничена объемом колбы. Конечно, теоретически вы туда можете запихать 20-30 стержней, но светиться они у вас будут всего несколько секунд.

Читайте также:
Цементно-стружечная плита (ЦСП): фото, применение, технические характеристики, отзывы

Малое пространство и небольшой объем газа в нем, просто не успеют оперативно отвести образовавшееся тепло и светодиоды моментально перегреются. Понадобятся колбы совершенно других форм и размеров.

Поэтому филаментные лампочки привычных габаритов А60 стараются не делать большой мощности. Экономия здесь не причем.

Все дело в технической составляющей и ограничениях по перегреву.

Реальные показатели будут раза в два меньше указанного на упаковке.

11 ваттные модели по люменам и уровню освещения не заменят вам полноценные 80-100 Вт, которые дают простые лампы накаливания.

Они будут соответствовать максимум 60 Вт. То же самое относится и к индексу цветопередачи CRI.

В лучшем случае он будет превышать показатель 80, но никак не CRI>90.

Вот таблица наиболее распространенных тип ламп, их максимальная мощность и световой поток, которые они способны выдать.

Данные получены известным специалистом в области световых технологий Алексеем Надёжиным, в результате независимых тестов и лабораторных замеров.

Каждый раз, когда вы видите в магазине лампочку, на упаковке которой будут написаны показатели превышающие эти измерения, знайте – вас дурят. Это чистый маркетинг и гонка производителей.

Напишешь на своем изделии 7Вт, а рядом будет стоять конкурент с надписью 9Вт, причем за те же деньги, то 9 из 10 купят именно его продукцию, а не твою. 99% потребителей попросту не имеют соответствующих приборов для измерений и проверки.

Им главное, чтобы изделие служило подольше.

Обращайте на это внимание.

Помимо малого нагрева филаменты обладают еще одним преимуществом – высокая светоотдача. Он доходит до 120 Лм/Вт.

При этом угол рассеивания лампочек достигает 360 градусов. В то время как в обычных светодиодных он не превышает 120-270 градусов.

Когда филаментная лампочка висит вниз колбой, у нее по центру появляется пятно, которое раза в два темнее, чем весь освещаемый периметр. Диаметр пятна достигает 50см на удалении в 1,5 метра от самой лампочки.

Форма пятна – это четырехлистник, который образуется от нитей светодиодов сходящихся наверху вместе.

Чем он шире, тем больше это пятно.

Кроме прямых нитей, выпускаются модели с дугообразной и спиральной формой.

Они дороже и их чаще всего используют в качестве декоративной подсветки под Новый Год.

Филаментные лампы идеально подходят для хрустальных светильников и люстр. В них как раз-таки важен нитевидный источник света, который при отражении будет играть на гранях хрусталя.

Матовые экономки в таких люстрах смотрятся нелепо. Свет получается “мертвый”, а висюльки не сияют.

Помимо преимуществ стоит упомянуть и о недостатках, а их не так уж и мало.

Во-первых, это цена. Она высокая из-за дорогих миниатюрных драйверов, которые по причине ограниченного пространства нужно как-то умудриться запихнуть в цоколь.

Из-за маленького драйвера возникают проблемы с фильтром. А отсюда повышенные пульсации света.

Вот к примеру сравните, старую добрую светодиодную лампу на технологии SMD и современную филаментную.

У старых один драйвер был такого же размера, как колба у филаментной.

Обязательно проверяйте пульсации при покупке. Иначе повесите такие лампы у себя в зале и спальне как основной источник света, а затем будете мучиться с глазами.

Если подходить к этому вопросу по всей строгости закона, то лампы с плохими показателями коэффициента пульсации, вообще не имеют права даже находиться на прилавках магазинов.

Существует постановление правительства России №1356 “Требования к осветительным приборам и осветительным лампам”. Оно запрещает продажу источников света с пульсацией более 10% и CRI

Заметьте, что у одних и тех же по размеру лампочек внутри может быть два разных драйвера. Один полноценный с коэффициентом пульсации 1% и менее, другой – на основе дешевых комплектующих.

Хороший драйвер при поднесении к нему радио будет фонить. А вот дешевый, не создаст никаких серьезных импульсных помех в эфире.

В некоторых моделях “свеча” с миниатюрным цоколем E14, драйвер помещают в специальную проставку между цоколем и колбой, так как воткнуть что-то качественное в бочонок диаметром 14мм вообще не реально.

Второй недостаток – стеклянная колба, которую легко можно разбить при небрежном отношении или транспортировке.

Третий – малая мощность. А еще не забываем:

Филаментная LED лампа
Устройство, схема, пример ремонта

Светодиодная филаментная лампа – это искусственный источник света, в котором световая энергия вырабатывается нитевидным элементом, называемым филаментом (filament), состоящим из множества включенных последовательно светодиодных кристаллов.

Филаментная лампа была разработана японской компанией «Ushio» в 2008 году, но из-за малой мощности для освещения была непригодна. И только в 2013 году китайским компаниям удалось добиться величины излучения светового потока филаментной лампы, сравнимого с лампой накаливания мощностью 60 Вт. Внешний вид филаментной лампочки показан на фотографии.

Филаменты

Источником излучения светового потока в филаментной лампе являются филаменты, откуда и произошло название лампы.

На фотографии показано шесть филаментов, извлеченных из перегоревшей лампы. Филаменты могут иметь любую форму, даже спирали. Это позволяет дизайнерам создавать эксклюзивные лампочки.

Читайте также:
Финские, немецкие, белорусские деревянные окна со стеклопакетом

Устройство светодиодного филамента

Филаменты изготавливают по технологии Chip-On-Glass, сокращенно COG, что переводится как чип на доске.

Основанием филамента служит стеклянный или сапфировый стержень круглой формы с вплавленными в него по торцам электродами. Диаметр стандартного стержня составляет 2 мм, длина – 30 мм.

Вдоль стержня закреплено последовательно соединенных 28 светодиодных миниатюрных кристаллов синего и красного цветов излучения. Сверху светодиоды покрыты слоем лака, пропускающим только белый свет.

Мощность филамента составляет около 1 Вт, напряжение, необходимо для свечения составляет около 60 В. Рабочий ток, соответственно, около 16 мА.

Филаменты в лампочках размещают в герметичную стеклянную колбу, но они успешно могут работать и на открытом воздухе, что позволяет из них делать оригинальные самодельные светильники.

Устройство филаментной лампочки

Если посмотреть на филаментную лампочку издалека, то можно и не отличить ее от лампы накаливания. Такая же стеклянная колба и внутреннее устройство. Только спирали толще и расположены вертикально.

Но это только внешнее сходство, так как работает филаментная лампа по принципу светодиодной лампочки.

Для подачи питающего напряжения в лампе имеется металлический цоколь с резьбой Эдисона. В настоящее время лампы оснащают цоколями только типоразмеров Е14 и Е27. В цоколе размещен драйвер, который обеспечивает преобразование переменного напряжения сети в постоянное напряжение, стабилизированное по току.

С драйвера питающее напряжение подается через два проводника, вплавленных в герметичную стеклянную колбу, на выводы размещенных в ней филаментов. Филаменты между собой и токовводами соединяются с помощью точечной сварки. Для эффективного отведения тепловой энергии от филаментов колба заполнена гелиевой газовой смесью, которая обладает высокой теплопроводностью.

Анализ причины перегорания филаментной лампы

Чтобы не отставать от технического прогресса при появлении на рынке филаментных ламп приобрел двенадцать таких лампочек с цоколем Е14 мощностью 6 Вт для двух люстр.

Лампы красиво смотрелись в люстре и хорошо освещали помещение, но через год эксплуатации одна из них ярко вспыхнула и перестала светить. Решил выяснить, в чем причина отказа.

Попытка отделить цоколь от колбы лампы не увенчалась успехом. Клей-компаунд скрепил цоколь с колбой намертво. Пришлось применить разрушающий метод разборки с помощью тисков.

Для извлечения драйвера из цоколя пришлось, вращая его сжимать по немного тоже в тисках. Компаунд и остатки стекла колбы при этом крошились.

В результате удалось извлечь из лампы филаменты и драйвер без их повреждения. На фотографии показано как выглядит филаментная лампа без колбы и цоколя.

При осмотре драйвера сразу бросилось в глаза, что рядом с токоограничивающим конденсатором резистор был покрыт слоем копоти, что свидетельствовало о сгорании одной из деталей. Проверка резистора показала его исправность. Следовательно, вышел из строя конденсатор.

На противоположной стороне печатной платы драйвера был распаян только мостовой выпрямитель и нанесена маркировка для подключения. Прозвонка диодов мультиметром показала, что все диоды исправны.

Электрическая схема филаментной лампы

Для дальнейшего анализа причины отказа с печатной платы драйвера срисовал электрическую принципиальную схему филаментной лампы. Как видно из схемы, она практически не отличается от стандартной схемы светодиодной лампы, собранной на обыкновенных светодиодах с токоограничивающим конденсатором.

Ток стабилизируется с помощью конденсатора С1, выпрямляется диодным мостом VD1-VD4 и далее поступает на филаменты HL1-HL6, соединенные последовательно двумя параллельными группами по три. Резисторы служат для разряда конденсаторов после выключения лампы. С2 сглаживает пульсации.

Достоинством этой схемы драйвера является простота, позволяющая поместить его даже в цоколь Е14, высокий КПД и практически отсутствие выделения тепла. Недостатком является большой коэффициент пульсаций светового потока, что исключает использование ламп с таким драйвером для освещения рабочих мест с напряженным трудом.

Если необходима филаментная лампа с малым коэффициентом пульсаций, то нужно приобретать с драйвером на микросхеме. На фото классическая схема такого драйвера, но он больше по размерам, поэтому устанавливается только в филаментные лампы с цоколь Е27.

Проверка филаментов лампы

Для проверки филаментов необходимо на их выводы подать напряжение постоянного тока не менее 60 В. Поэтому мультиметром, который выдает в режиме измерения сопротивления напряжение не более 9 В прозвонить филамент невозможно.

Поэтому для проверки филаментов был использован драйвер, извлеченный из лампы. Конденсатор С1 был в обрыве, поэтому был выпаян и вместо него запаян исправный навесной такой же емкости.

При подаче напряжения на драйвер, засветился только один из шести филаментов, и то участками, что указывало на возможную неисправность всех филаментов лампы.

Для проверки филаментов они были разъединены и проверены по отдельности. Подключались к родному драйверу, последовательно с которым по цепи подачи питающего напряжения был запаян дополнительных конденсатор такой же емкости.

Как и ожидалось, все филаменты оказались неисправными. Один из них засветился, как и ранее, участками, что не позволяло его дальнейшее использование.

Причина перегорания филаментной лампы

Филаментная лампа перегорела из-за электрического пробоя токоограничивающего конденсатора С1. В результате все напряжение питающей сети (220 В) было приложено к выводам светодиодных филаментов и через них потек ток, превышающий допустимый.

Читайте также:
Штукатурка стен – технология выравнивания и нанесения

Светодиоды от перегрева перегорели, как и сам конденсатор. От него и покрылась копотью печатная плата.

Ремонт филаментной лампы

Схемы драйверов у филаментных ламп такие же, как и обыкновенных светодиодных и ремонт их отличается только способом разборки. Приведу пример из личной практики ремонта филаментной лампы.

Через некоторое время перегорела еще одна лампа в люстре из этой же партии. С учетом полученного опыта решил применить неразрушающий способ ее разборки, так как внешний осмотр не выявил перегорания филаментов.

Для этого была использована мини дрель с установленным в нее наждачным диском, как у болгарки. Такая мини дрель в комплекте имеет большой набор инструментов, позволяющий выполнять практически любые ювелирные работы, начиная от сверления и заканчивая гравировкой на металле и стекле.

Цоколь филаментной лампы был зажат за резьбовую часть в тисках и прорезан абразивным диском по всей длине его окружности, как показано на фотографии.

Далее при одновременном разогреве центрального контакта цоколя паяльником резьбовая его часть была отсоединена. В результате получен доступ к печатной плате драйвера. Драйвер был обвернут изоляционной прозрачной пленкой.

Изоляция была удалена и диоды выпрямительного моста проверены с помощью мультиметра. Они оказались в обрыве. Мост был заменен диодным мостом, взятым из драйвера разбитой описанной выше лампы.

Для исключения перегорания филаментов последовательно с установленным в драйвере конденсатором был впаян навесной емкостью 0,5 мкФ и на схему подано напряжение.

Филаменты засветились, правда с меньшей яркостью, так как при последовательном соединении конденсаторов суммарная их емкость всегда становится меньше, чем емкость конденсатора в цепочке с меньшей емкостью. Слабое свечение филаментов свидетельствовало о исправности конденсатора на плате. При подаче питающего напряжения на выводы лампы она засветила на полную яркость.

Для восстановления целостности цоколя отпаянный вывод драйвера был заведен в предварительно освобожденный от припоя центральный контакт и половинки цоколя соединены в четырех местах с помощью пайки. Для надежности были использованы отрезки выводов от советского транзистора.

Осталось только вкрутить отремонтированную своими руками филаментную лампу в патрон люстры для проверки. Как видите все лампочки светят одинаково ярко.

Достоинства и недостатки филаментных ламп

Достоинства филаментных ламп:

  • Большой срок службы;
  • Большой угол рассеивания светового потока, как у ламп накаливания;
  • Красивый внешний вид, что позволяет использовать их в любых видах светильников;
  • Полная взаимозаменяемость с лампами накаливания, что позволяет устанавливать филаментные лампы в любые старые люстры и светильники;
  • Возможность дистанционного изменения яркости свечения (диммирование);
  • Безопасная температура нагрева стеклянной колбы, что исключает возможность получения ожога при случайном прикосновении;
  • Утилизируются как бытовые отходы.

Недостатки филаментных ламп:

  • Цена больше, чем у обыкновенных светодиодных;
  • Выпускаются только для сети напряжением 220 вольт;
  • Доступно только два вида цоколя – E27 и E14;
  • Мощность не превышает 6 Вт (эквивалент лампочки накаливания 60 Вт);
  • В случае перегорания филаментов не подлежат ремонту;
  • Требуют бережного отношения из-за стеклянной колбы.

Заключение

Как видите, недостатки филаментных ламп, кроме цены, на практике мало ограничивают возможность их применения в бытовых условиях.

Хотя максимальная мощность лампы в настоящее время небольшая, но четырех или пятирожковая люстра с лампочками мощностью 6 ватт вполне обеспечит достаточное освещение помещения площадью до 20 м 2 . А если понадобиться осветить комнату большей площади, то можно повесить две люстры.

Филаментная лампа являются образцом последних достижений светотехники и в ближайшее время вытеснит все остальные источники искусственного освещения в помещениях.

Что такое филаментные лампы Томича (led filament)?

Светодиодные лампы очень популярны и потребляют мало электроэнергии, но для некоторых светильников их внешний вид не подходит. Особенно касается хрустальных люстр и бра. В таких случаях лучше приобрести светодиодные лампы filament.

Филаментные лампы что это такое?

Это вид светодиодных ламп, которые внешне максимально приближены к лампам накаливания. Они имеют полностью прозрачную стеклянную колбу и цоколь, а внутри расположены светодиоды вместо нити накала.

Филамент – основной функциональный элемент такой лампы, представляет собой светодиодную полоску особой конструкции. Внешним видом филаменты напоминают нить, потому некоторые так их и называют — лампочки на светодиодных нитях.

Из чего состоит светодиодная нить?

Рассмотрим более подробную структуру такого типа LED – Filament. Дословно на русском языке это слово звучит, как нить накала. Состоит из трёх слоев:

  1. Стеклянное или сапфировое основание;
  2. 28 светодиодов синего свечения. Иногда, для получения более тёплых оттенков, часть синих светодиодов заменяются красными, в пропорции 1 к 3;
  3. слой люминофора, который обеспечивает свечение белого цвета необходимой цветовой температуры.

светодиодные нити (филаменты) крупным планом

В среднем мощность одного филамента – порядка 1Вт, а напряжение – от 60 вольт. Такое напряжение питания не позволяет производить низковольтные лампы со светодиодными нитями.

Филаментные лампы выдают довольно сильный световой поток, сравните его с другими типами из таблицы. Филаменты выпускаются в весьма узком диапазоне мощностей – от 4 до 8 Вт.

Тип лампы Потребляемая мощность, Вт Светоотдача, Лм/Вт Световая температура, К Срок службы, часов
Лампа накаливания 10-500 9-19 2700 1000
Люминесцентная энергосберегающая (КЛЛ) 15-80 40-80 До 6500, в зависимости от исполнения 40 000
Светодиодная LED лампа 3-30 100-120 До 6400, в зависимости от исполнения 50 000
Филаментная LED лампа 4-8 120-140 До 4500 30 000

Корпус филаментных ламп совершенно отличается от светодиодных, в привычном их виде. Филаментные в точности повторяют конструкцию лампочек накаливания, что позволяет отечественным производителям делать их на тех же производственных линиях, что и накаливания. О том, какие последствия влечет за собой такое исполнение, мы расскажем ниже.

Конструкция филаментной лампы Томича

Лампа с нитевыми светодиодами состоит из:

  • Цоколя, обычно E27 или E14;
  • стеклянная колба;
  • внутри колбы расположена стеклянная ножка и проводники для питания филаментов;
  • филаментные светодиоды;
  • драйвер, который расположен в цоколе.

На фото подробно рассмотрена конструкция производителя Rusled. Они продают свою продукцию под название «лампочка Томича».

Это изделия отечественного производства, они нацелены на замещение импортной продукции. Даже в своем названии проводят аналогию с лампой «Ильича». Лампа Томича — это своего рода новый шаг в развитии бытового освещения.

Кроме «Томича» на территории нашей страны производство есть в Саранске – на заводе «Лисма». Как заявляют рекламные ролики: «Единственная в РФ производственная линия лампового стекла и цоколей».

При этом в России нет мощных предприятий способных наладить выпуск подобных светодиодов, поэтому LED-комплектующие импортируют из Китая.

В обычных светодиодных лампах драйвер размещен на плате, для которой в корпусе достаточно много места. Это позволяет использовать схемы высокого качества и уровня сложности, с целью снижения коэффициента пульсаций.

В случае с размерами драйвера лампы filament led есть ограничения – его плата очень маленькая и должна вмещаться в пределах полости цоколя. Взгляните как это выглядит в жизни.

В таком маленьком пространстве конструкторам удалось разместить все необходимые детали. Качественные лампы не пульсируют или их пульсации крайне малы и находятся в пределах допустимого.

Естественно, бюджетные лампы зачастую оборудованы обычной схемой питания на гасящем конденсаторе, как и в случае с пластиковыми классическими светодиодными лампами. Это дает слишком пульсирующий свет, что крайне вредно для вашего здоровья.

Схема драйвера

Драйвер выполняется обычно по подобной схеме. Вместо предохранителя F1 может использоваться низкоомный резистор (до 20Ом) средней мощности (до 1Вт).

DB1 – это выпрямительный диодный мост, рассчитанный на обратное напряжение до 400-1000В. E2 – конденсатор сглаживающий пульсации диодной моста, E1 – дополнительный конденсатор для питания микросхемы. SM7315P и подобные – это микросхема драйвер, сердце всей цепи.

Его устройство включает в себя ШИМ-контроллер, цепи обратной связи по току (различные мультиплексоры, компараторы и другие элементы. Они сравнивают значение номинального тока и реального, после чего дают сигнал ШИМ-контроллеру на изменение коэффициента заполнения управляющих импульсов). ШИМ управляет силовым ключом (n-MOS скорее всего). Силовой ключ расположен в корпусе микросхемы, поэтому на плате его вы не найдёте.

R1 – датчик тока, позволяет изменить силу тока в цепи светодиодов. Чем больше его номинал – тем меньше ток.

L1 – накопительная индуктивность, благодаря которой происходит преобразование напряжения.

D1 – диод, необходимый для работы преобразователя.

E3 – конденсатор, фильтрующий выходные пульсации.

R2 – резистор, обеспечивающий минимальную нагрузку для преобразователя.

В целом, контур образованный из L1, D1 и транзисторного ключа, встроенного в микросхему, представляет собой типовую схему импульсного понижающего преобразователя. Упрощенный вариант такой схемы изображен на следующем рисунке.

Особенности конструкции

Как я часто пишу – светодиоды греются. При этом нагрев происходит настолько сильный, что некоторые чипы не могут проработать и минуты без дополнительного теплоотвода. У мелких светодиодов в SMD-корпусах тепло отводится через их контактные площадки.

Мощность одного филамента около 1 ватта. Взгляните на SMD-светодиоды – на каждый ватт их мощности, нужно 25-30кв.см. площади радиатора. Отсюда возникает интересный вопрос, связанный с охлаждением филаментов.

Мощность филаментной лампы можно определить по её внешнему виду, а именно по количеству нитей. 1 нить — 1Вт.

Как охлаждаются филаментные светодиоды?

Во-первых, филамент – это не цельный мощный светодиод, а лишь матрица. Тип матрицы в этом форм-факторе на англоязычных ресурсах называется «COG» или «Chip-on-Glass». На русском языке это что-то вроде «Матрица на стеклянной основе».

Во-вторых, раз уж это матрица, значит на ней есть множество мелких светодиодов. По отдельности они выделяют очень мало тепла, так как они маломощные. Приблизительный расчет:

1 Вт / 28 светодиодов = 0,036 Вт/светодиод

Для отвода тепла нужен носитель. Производители заполняют колбу филаментных ламп хорошо проводящим тепло газом. Одни источники заявляют, что этот газ — гелий, в рекламных видео о лампочках томича говорится о специальной рецептуре газов. Однозначной информации по этому поводу нет.

Благодаря такой конструкции нагрев филаментной лампочки слабый – порядка 50-60 градусов. Вы смело можете использовать их в светильниках с бумажными, тканевыми и пластиковыми абажурами. Нагрев самой нити филамента доходит до температур свыше 100 градусов. Современные светодиоды способны работать и при температурах КРИСТАЛЛА в 120 градусов, а корпус имеет значительно меньший нагрев.

Распространение филаментов

После появления филаментных ламп – спрос на них начал расти и постепенно дошел до уровня обычных светодиодных изделий. Причина этому проста – их дизайн и возможность добиться большого угла свечения, без использования дополнительных оптических систем.

У стандартных светодиодных ламп, в пластиковом корпусе, угол излучения до 170 градусов. У филаментных же доходит до 300 градусов.

Такого угла свечения получилось достичь благодаря стеклянной прозрачной колбе и расположенных по кругу филаментов. Некоторые модели имеют нестандартные формы и способ расположения филаментов (под углом, крест на крест, S-образно), для обеспечения более равномерного освещения.

Сравнительная таблица филаментнов от разных производителей

Если решили покупать — обратите внимание на производителя. Заявленные параметры у всех отличаются и зачастую завышен процентов на 10.

Модель лампы Цена, $ Заявленная мощность, Вт Световой поток, Лм Аналог лампы накаливания, Вт Срок службы, часов
Maxus филамент A60 4-5 8 800 60 30000
VIDEX NeoClassic (Filament) A60FA 2200K 3-4 7 630 55 40000
Philips LEDClassic A60 WW CL D APR 7-8 7,5 806 70 15000
OSRAM LED RF CL A60 2700К 6-7 6 806 75 15000
Лисма СДФ-8Вт 5 8 780 75 30000
Лампа «Томича»
СА 220-8
3-5 8 800 75 15000

Как вы можете понять из таблицы, изделия разных производителей выдают различное количество света при одинаковой мощности. Это связано с тем, что они получают различный удельный световой поток (Лм/Вт) с каждого ватта мощности светодиодного светильника.

Это вызвано различными поставщиками материалов или схемотехникой и режимами работы драйвера.

Проблемы нитевидных светодиодов

Колба, выполненная из стекла бьется. Хоть и форма колбы придаёт ей большую жесткость, и способна выдержать некоторую нагрузку, но все же она бьется. Рассеиватель стандартной светодиодной лампы гораздо прочнее. При этом битая филаментная лампа может сохранить свою работоспособность, что вы можете увидеть на фотографии.

Также сохраняется высокая вероятность поражения электрическим током, при прикосновении к токоведущим частям.

Этот вопрос прорабатывается производителями, ведутся работы по внедрению колб из поликарбоната, что повысит прочность и снизит стоимость продукта.

Бюджетные филаментные лампы не работают заявленные сроки в 15 000 и более часов, по причине низкого качества комплектующих. Лампа либо просто перестает включаться, либо начинают мерцать или перестают светиться отдельные нити.

Филаментные лампы в отличии от классических моделей светодиодных ламп, не поддаются ремонту, что является еще одним минусом в этой конструкции.

Может вы заметили еще какие-то достоинства или недостатки? Поделитесь в комментариях.

Преимущества филаментных ламп

  • Равномерное свечение во всех направлениях;
  • низкая рабочая температура;
  • хорошо выглядят, можно использовать в открытых и прозрачных светильниках;
  • утилизируются как бытовые отходы;

Недостатки

  • Цена выше чем у обычных;
  • хрупкая стеклянная колба;
  • не пригодны для ремонта;
  • при выходе из строя отдельной филаменты – создает дискомфорт и мигания;
  • разброс по качеству и выбраковка в разы большая, чем у пластиковых аналогов;
  • производятся только для сетей 220 вольт;
  • доступно два цоколя – E27 и E14;

У светодиодных ламп филаментного типа есть свои плюсы и минусы, однако минусов на момент написания статьи больше чем плюсов. Это не значит, что нужно забыть об этих лампах, просто нужно учитывать для чего вы её покупаете.

Филаментные лампы неплохо подойдут как источник света для настольных светильников, а также в декоративных целях. Они практически холодные во время своей работы. Репутацию филаментных ламп портит низкосортная продукция недобросовестных китайских производителей.

Филаментные светодиодные лампы – в чём секрет их популярности?

На чтение: 4 минуты Нет времени?

Филаментные светодиодные лампы приходят на смену традиционным светодиодным устройствам. Внешне они чем-то схожи с лампочкой «Ильича» и имеют похожее название — лампочка «Томича». Такие устройства больше подходят для хрустальных люстр или напольных светильников, а по экономичности filament LED значительно лучше обычных ламп накаливания.

Читайте в статье

Что такое филаментные лампы: общие сведения

Филаментная светодиодная лампа представляет собой устройство в привычном стеклянном корпусе с цоколем, только вместо нитей накаливания внутри устанавливаются нити светодиодов с разным цветом свечения (бывают синие и красные). Колба полностью прозрачная, а внутри можно видеть определенное число светящих элементов (от 4 до 6 штук). По установленным нитям можно определить мощность лампочки: 1 нить= 1Вт.

Как устроена филаментная лампа

Лампочки со светодиодными нитями накаливания постепенно завоевывают позиции на рынке электротехники. Это заслуживается продуманным строением прибора. Состоит лампа из четырех основных частей:

  • металлический цоколь;
  • колба из тонкого стекла;
  • светодиодные нити;
  • встроенный драйвер.

Лампочки данного типа не выделяют токсичных запахов так, как являются экологичным изделием.

Давайте детально обратимся к каждой части прибора и уточним основные их функции.

  1. Металлический цоколь по внешнему виду стандартный, а вот внутри места недостаточно для полноценного внедрения платы с конденсатором и преобразователем. В дальнейшем разработчики планируют увеличить пространство внутри цоколя путем установки пластиковой окантовки между основанием колбы и цоколем.
  2. Стеклянная колба ничем не отличается от той, что устанавливается на привычную нам лампу накаливания. Стекло по-прежнему хрупкое и недолговечное, но и решение этой проблемы планируется в ближайшем будущем.
  3. Светодиодные нити представляют собой стержень с нанесенным люминофором, который обеспечивает преграду для проникновения ультрафиолета и стабилизирует освещение, комфортное для зрения. Внутри защитного слоя устанавливается большое количество мелких светодиодов, а их цветовая температура соответствует теплому или нейтральному оттенку.
  4. Плата с драйвером занимает практически все пространство внутри цокольной полости, однако этого было достаточно чтобы свести все потери импульсов и питания для филаментных стержней. В дальнейшем планируется установить более объемную плату драйвера, а также укомплектовать устройство сглаживающим конденсатором.

Полезно знать! Дешевые китайские филаментные лампы не имеют встроенного предохранителя, как на люминесцентных светильниках, поэтому лучше отказаться от такой покупки в пользу именитых брендов, которые в том числе есть и в России.

Способ отвода тепла

Внутри корпуса предусмотрена прочная алюминиевая прокладка, которая позволяет постепенно удалять тепло с драйвера.

Работа светодиодных нитей осуществляется при помощи тока, который ниже максимального допустимого. В рабочем режиме светодиодный элемент имеет свойство нагреваться до 60 градусов, и это довольно высокий показатель, который может спровоцировать перегрев. Чтобы этого не происходило в устройстве предусмотрена закачка гелия, который забирает теплоотдачу, рассеивая ее. Известно, что именно гелий имеет хорошую теплопроводность.

Однако в полости цоколя есть еще один источник нагрева — это драйвер, в котором отсутствует радиатор, что способствует медленному рассеиванию тепла. Как оказалось, сильный перегрев рабочей платы вызывает длительное мерцание лампочек и скорейший выход из строя устройства.

случае перегрева возникает потеря яркости светодиодами.

Обязательно учитывайте наличие токового драйвера при покупке filamentLED, обычно эти сведения указываются на упаковке.

Угол свечения филаментных светодиодов

Спрос на филаментные лампы значительно вырос за последние годы, и это обусловлено именно комплексным подходом к освещению в комнате. Почему потребитель выбирает именно этот источник света? Дело в том, что угол излучения света в данных приборах соответствует 300 °C, в то время как стандартные светодиодные элементы способствуют рассеиванию лучей только на 170 °C.

В случае перегрева лампочек пользователю не грозит воспламенение, а только выход устройства из строя.

Такой эффект освещения достигается благодаря нужному количеству стержней накаливания, а также их равномерному расположению по всему периметру колбы и ее идеальной прозрачности. Встречаются лампочки, в которых стержни размещаются фигурно: S-образно, по кругу, крест на крест или под углом. Этот подход помогает сделать освещение более равномерным. Обычно лампочки с похожим свойством приобретают для светильников, установленных на рабочих столах, а также для детского освещения.

Некачественные лампочки часто сопровождаются максимальной пульсацией: гаснут и снова загораются.

Основные параметры филаментных светодиодных ламп

Всю информацию относительно выбранной filamentLED можно прочитать на упаковке к устройству, однако не каждый хозяин способен корректно расшифровать, о чем говорится. Очень много из указанных комбинаций можно узнать и о внешнем виде приспособления.

  1. Начнём со стандартной формы колбы, которая на коробке обозначается, как А60. Также в продаже встречаются сферические или шарообразные варианты с условным обозначением А95.
  2. Количество ватт, к примеру 6 ВТ — это мощность, которая присвоена данному источнику освещения. Если вы приобрели модель с показателем 6 Вт, значит она будет соответствовать 60 Вт-ной лампе накаливания.
  3. Число с латинской буквой «Е», к примеру, Е27 говорит о том, что в лампочке предусмотрен стандартный размер цоколя с диаметром 27 мм. Есть лампы с уменьшенным типом цоколя E14, но такие больше подходят для малогабаритных настольных ламп.
  4. Показатель цветовой температуры может отличаться. В некоторых моделях свечение составляет 2700 кельвинов, что сопровождается желтым освещением, а у моделей с белым освещением нагрев соответствует 4000 кельвинам.

Несмотря на то, что филаментные лампы — это инновационная разработка в сфере электротехники, в них присутствуют еще неусовершенствованные частницы, некоторые из них подлежат срочной переработке. Именно это по мнению экспертов повышает безопасность при использовании устройства.

Если корпус филаментной лампы продуман при падении на пол, она может остаться целой.

Преимущества и недостатки филаментных лампочек

Большой объем продукции со светодиодными стержнями можно встретить на рынке, однако определить дешевую подделку или настоящую профессиональную вещь бывает сложно. Поэтому лучше выбирать модель более-менее известную по бренду. Ведь за этим дело не встанет, так как качественная продукция обладает массой полезных качеств. Подробнее о них смотрите ниже:

  • приборы схожи с лампами накаливания, поэтому подойдут в любую люстру, если это позволяют условия;
  • широкий угол рассеивания, что является отличным показателем для затемненных помещений;
  • большая светоотдача, так как лампа имеет исключительно прозрачный корпус;
  • длительный срок службы, и планирование совершенствовать разработку с одновременным снижением цен дабы сохранить конкурентоспособность.

В лампочках присутствуют чипы, размер которых меньше человеческого волоса.

Что можно выявить из недостатков:

  • корпус не разбирается, соответственно, в случае поломки, лампочку остается только выкинуть;
  • колба очень хрупкая, а ее осколки острые;
  • в конструкции стержневой лампы отсутствует предохранитель;
  • высокая цена;
  • высокий коэффициент пульсации.

Положительные результаты в тестировании филаментных лампочек получила и компания Philips.

FilamentLED — это источники освещения, которые предусматривают постоянное изменение конструкции, а также внедрение новых действующих элементов. Вполне вероятно, что спустя пару лет начнется массовая замена традиционных светодиодов на филаментные лампы.

Уважаемые читатели, если у вас остались вопросы по теме статьи, задавайте их в комментариях. Мы обязательно свяжемся с вами и обсудим все нюансы.

Филаментные светодиодные лампы: что это такое и для чего нужны?

Да, это тоже светодиодные лампы. Очень эффектные, поэтому они отлично подходят как для освещения, так и для декора. Рассказываем подробнее о филаментных лампах в нашей статье.

По экономичности и долговечности светодиодные лампы значительно превосходят энергосберегающие и лампы накаливания. Существует особый вид светодиодных изделий: филаментные лампы. Они незаменимы, если обычные лампочки не вписываются в дизайн или просто хочется каким-то образом разнообразить интерьер. Что они из себя представляют и как работают? Об этом подробно в нашей статье.

Конструктивные особенности филаментных ламп

Визуально они похожи на лампы накаливания, так как имеют несколько вертикально расположенных нитей. Однако здесь стоят не вольфрамовые нити, а светодиодные. Из чего состоит такая лампа?

  1. Стеклянная колба с газом внутри.
  2. Филамент.
  3. Цоколь стандарта Е27 и Е14 с драйвером внутри.

Сами по себе филаментные нити состоят из трех конструктивных слоев:

  • Стеклянное или сапфировое основание.
  • Ряд из 28 светодиодов. Обычно эти светодиоды имеют синее свечение, но для получения более теплого цвета (снижения цветовой температуры) третья часть светодиодов заменяется на красные.
  • Слой люминофора определенного оттенка, который нужно получить при свечении лампы.

В среднем мощность одного филамента составляет 1 Вт, а их количество не превышает 8 шт. Поэтому мощность лампы обычно варьируется от 4 до 8 Вт. Однако это не означает, что филаментные лампы слабые. Они выдают довольно мощный световой поток. Обратите внимание на таблицу. В ней приведены сравнительные показатели мощности и светового потока, выдаваемого разными лампами.

Тип Лампы Мощность, Вт Светоотдача, Лм/Вт
Накаливания от 10 до 500 9 — 19
Люминесцентная от 15 до 80 40 – 80
Светодиодная от 3 до 30 100 –120
Филаментная от 4 до 8 100 – 140

Обратите внимание, что по светоотдаче они превосходят обычные светодиодные, энергосберегающие и лампы накаливания.

Как осуществляется отвод тепла?

У светодиодных нитей ток довольно ограничен, поэтому сами кристаллы не перегреваются. В процессе работы нить нагревается приблизительно до 60° С. За отведение температуры отвечает смесь газов на основе гелия, которая выводит тепло через стенки колбы.

Плюсы и минусы филаментных ламп

Плюсов применения филаментных изделий несомненно больше , чем минусов, и вот некоторые из них:

  • Отличное дизайнерское решение. Филаментные осветительные приборы отлично подходят для бра и люстр в квартире, оформления кафе и офисов.

  • Полномасштабный угол рассеивания. Благодаря наличию нескольких нитей, рассеивание светового потока происходит полные 360°, в отличие от других светодиодных ламп.
  • Долгий срок службы. Качественные фирменные модели способны прослужить до 40000 часов (при условии работы не более 5 часов в день).

Из минусов стоит выделить следующие:

  • Быстрый выход из строя некачественных драйверов — решается путем покупки фирменных ламп.
  • Высокая цена. Цена в среднем выше, чем на обычные светодиодные, но долгий срок службы окупит затраты.

Что еще нужно знать о светодиодных лампах:

Что такое филаментные лампы и в чем их особенность

Филаментные лампы относятся к светодиодным источникам света, однако внешне и конструктивно существенно отличаются от них. По виду они практически идентичны обычной лампочке накаливания (ЛН). Филаментные светодиодные лампы (ФСЛ) вобрали в себя все лучшие свойства, присущие матричным ЛЭД-лампам и традиционным ЛН. Назначение производимых осветительных приборов – замена неэкономичных источников света устройствами, изготовленными по передовым технологиям.

Из чего состоит филаментная светодиодная лампа

В качестве источника света в ФСЛ использована светодиодная нить – филамент. Технология изготовления впервые была опробована при производстве экранов мобильных устройств. На прозрачную основу (подложку), выполненную из стекла или искусственных сапфиров, устанавливаются миниатюрные светодиоды в количестве 28 шт., которые последовательно соединяются между собой. Сверху элемент покрывается люминофором – веществом, способным преобразовывать поглощаемую энергию в световое излучение – люминесцировать.

Устройство нити филаментной лампы

Один такой фрагмент длиной 3 см может иметь мощность от 0,8 до 1,3 Вт. Поэтому в лампах одновременно применяются десятки элементов. Использование этой технологии позволяет получить светодиодную нить, излучающую свет во всех направлениях. Это является главным отличием лампы накаливания и филаментных ламп от традиционных матричных светодиодных светильников, которые освещают только одну полусферу.

Разновидности

Чаще всего в быту и в ретро светильниках используются лампы с цоколем Эдисона – Е27. Чтобы полностью перейти на филаментные, производители решили выпускать изделия под традиционный патрон. Это позволит не менять светильник. В многорожковых люстрах и настенных осветительных приборах с цоколем e14 тоже имеется возможность применять филаментные источники света.

Многие потребители привыкли управлять яркостью ЛН с помощью установленных диммеров. Для филаментных ламп такие устройства не подходят, т. к. вызывают мигание и самопроизвольное включение светильника. Регулировка яркости светодиодной нити происходит несколько иначе. Для этого используется специальный диммер.

Монтаж некоторых видов устройств предполагает дополнительную проводку. Устанавливаться диммер может как вблизи источника света, так и в коробке выключателя. Чаще всего управление происходит при помощи радиосигнала, передаваемого пультом управления.

Конструкция филаментной лампы

Устройство филаментного источника света во многом аналогично с конструкцией традиционной лампы накаливания. Блок, состоящий из LED-нитей, закрепляется на токоподводящих электродах, которые, в свою очередь, впаяны в стеклянный изолятор аналогично лампе накаливания. Все это помещено в герметичную прозрачную колбу, наполненную газом. В отличие от матричных светодиодных ламп в филаментных аналогах избавились от громоздких радиаторов.

Питание на LED-нити подается через драйвер, который понижает напряжение до рабочего, а переменный ток преобразует в постоянный. Это необходимо для уменьшения пульсаций, которые оказывают негативное влияние на зрение. Располагается устройство в цоколе и имеет небольшие размеры.

Драйвер

Он представляет собой электронную плату, служащую для преобразования напряжения с целью уменьшения пульсаций светодиодов. При этом коэффициент пульсации света снижается до 2%. Китайские производители часто применяют вместо драйвера обыкновенный диодный мост MB10F с несколькими резисторами и конденсатором. Филипс в своих лампах используют обратноходовый преобразователь, позволяющий снизить коэффициент пульсации до 1%.

Как охлаждаются филаментные светодиоды

Отвод тепла от светодиодов происходит с помощью газа большой теплопроводности, находящегося в лампе, и через тонкие стеклянные стенки колбы передается наружному воздуху. Чаще всего изделия наполняют гелием или смесью газов на его основе. Использование газа и тонкостенной стеклянной колбы позволило получить лучшие результаты, чем у радиаторов матричных ламп. Температура светодиодных нитей не поднимается выше 60°С.

Характеристики

Филаментные лампы выпускаются в ограниченном диапазоне потребляемой мощности – от 4 до 8 Вт, что эквивалентно 85 Вт ЛН. Это связано с проблемой охлаждения светодиодной нити. Такая лампа способна создать поток света, равный 980 лм. Светоотдача составляет около 120 лм/Вт. Производители заявляют срок службы изделия около 30 тыс. часов. Световая температура филаментных светодиодных источников света находится в пределах 2 700 К.

Большим спросом у потребителей пользуются изделия с цоколем Е14 на 6 ватт и Е27 – на 8 Вт. В связи с тем, что минимальное напряжение, подающееся на ЛЭД-нить, составляет 60 В, низковольтные модели не выпускаются.

Сравнение ламп от разных производителей

Признанный российский производитель Томский завод осветительных приборов Rusled реализует филаментные устройства под торговой маркой “Лампочка Томича”. Изделия этой фирмы нацелены на замещение импортной продукции. Выпускаются лампы трех модификаций: 4, 6, и 8 Вт со световым потоком 400, 600 и 800 лм соответственно. Производитель заявляет ресурс изделия равным 15 тыс. часов.

Изготовление филаментных источников света проводится на базе производства ЛН с использованием китайских комплектующих. При проведении независимого тестирования практически все заявленные характеристики были подтверждены. Однако ресурс изделий не выдерживает никакой критики. Из 30 тестируемых ламп за 2 месяца вышли из строя 26 шт. Связан ли брак с переходным периодом и модернизацией оборудования, не понятно.

Другой российский производитель из Саранска – Лисма – выпускает модели 4, 6, 8, и 9 Вт. Филаменты несколько отличаются от “томичей”. В этих изделиях стеклянная подложка покрывается кристаллами и люминофором только с одной стороны, вторая остается чистой. Это позволяет еще больше повысить срок службы кристаллов за счет увеличивающегося теплоотвода. Производитель гарантирует исправную работу источников света в течение 30 тыс. часов.

При проведении тестирования температура колбы 8- и 9-ваттных ламп составила 70 и 85°С соответственно. В этом случае сложно говорить о длительном сроке службы изделия. В этих же моделях и другие параметры, кроме пульсации, не соответствуют заявленным.

В большинстве случаев поломки филаментных ламп происходили из-за низкого качества изготовления драйвера. При разборке было выявленно повышенное (более 300 В вместо 160 В) напряжение, что говорит о выходе из строя источника питания. Эти поломки характерны для изделий обоих производителей. Хотя необходимо отметить, что процент брака у Лисмы ниже и составляет 20-25%.

Преимущества филаментных ламп

Положительными качествами филаментных ламп являются:

  • совместимость с патронами Е27 и Е14;
  • низкое энергопотребление;
  • большой световой поток и высокое качество света;
  • длительный срок службы;
  • экологичность, утилизируются как бытовые отходы;
  • низкая рабочая температура нити.

Благодаря этим характеристикам спрос на филаментные светодиодные лампы и их производство будут расти.

Недостатки

Как и любые недавно выпущенные изделия, эти лампы имеют свои отрицательные стороны:

  • высокая цена;
  • низкая прочность стекла;
  • большой процент брака;
  • отсутствие низковольтных аналогов.

Дальнейшее развитие производства должно привести к уменьшению цен и повышению качества продукции.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: