Чердачное окно своими руками: разновидности, размеры, монтаж

Как выполнить монтаж мансардных окон в металлочерепицу и мягкую кровлю: виды и монтаж своими руками: +Видео — Велюкс (velux), Факро (facro)

Использование пространства под крышей в качестве дополнительного жилого помещения находится сегодня на пике популярности. Это несложно объяснить.

Довольно долгое время соотечественники использовали чердак вместо кладовки, складирую там старые и ненужные вещи. К счастью, домовладельцы поняли, что эту площадь можно использовать с гораздо большей пользой. Это отличное место для обустройства там спальни, бильярдной, кабинета, детской или мастерской. Добротно обустроенная мансарда по своим эксплуатационным качествам фактически не отличается от других помещений жилища, и является вполне полноценным дополнительным этажом.

Мансардные окна

Как и любое другое жилое помещение, мансарда нуждается в естественном освещении, и, соответственно, в окнах.

Устройство и монтаж окон своими руками часто позволяет хозяевам строения заметно сэкономить на проведении необходимых манипуляций. Любители делать все собственноручно могут изучить в теории особенности монтажа подобных окон, и справиться с ним своими силами.

При тщательном изучении теории и грамотном подходе, такой монтаж считается не таким уж сложным мероприятием. Если у домовладельца полностью отсутствуют навыки строительных работ, то данное мероприятие лучше доверить профессионалам.

Если мансарда имеет достаточно большую площадь, то окна во фронтонах не смогут обеспечить качественное освещение. Эта проблема решается установкой в скат крыши специальных мансардных окон.

Специалисты убеждены, что грамотно сделанное и выбранное окно увеличивает количество пропускаемого света на величину до 40%. Кроме прочего, заметно улучшается качество вентиляции и проветривания помещения. Окна облагораживают помещение, делают его более обжитым, уютным и элегантным.

Мансардные окна: виды и типы

На мансардном этаже вполне можно использовать различные виды окон. Простейшая конструкция – обычные окна вертикальные, по факту мало чем отличающиеся от традиционных фронтальных окон. Их располагают на самом фронтоне дома или в особой выносной конструкции, в скате кровли (нередко ее называют скворечником). Эти окна довольно эстетично выглядят, украшают внешний вид, но не слишком функциональны: пропускают не так много света.

Мансардные окна наклонные. Это, своего рода, вызов природным стихиям. Они способны пропускать на 40% больше света.

Монтируют их на одном уровне со скатом кровли, между собой они подразделяются по типу конструкции, способу открывания и материалу. Для изготовления мансардных окон применяют древесину высокого качества, алюминиевый или ПВХ-профиль.

Окна из натурального материала предпочтительны для помещения с нормальной влажностью – кабинетов, спален, гостиных и прочее. Там же, где уровень влажности значительно повышен, лучше использовать пластиковые изделия, более устойчивые к воздействию агрессивных сред, плесени и влажности. По своим конструкциям мансардные окна могут заметно отличаться. В зависимости от свойственных им характерных особенностей их классифицируют следующим образом.

Квадратные

Окна стандартные квадратные или прямоугольные. Такие типы пользуются особенным спросом, и выбираются чаще всего.

Окно состоит из глухого стеклопакета, а может состоять из рамы со створкой. Рынок насыщен различными модификациями изделий с поворотными створками, а продукция с глухими стеклопакетами изготавливается обычно под заказ.

Окна балконные. Это особая конструкция, выглядит как наклонное окно в скате, сбоку которого или под ним расположено окно вертикальное.

Оба они могут открываться: вертикальное – вниз или в сторону, как обычное, наклонное – вверх. Такая хитрая конструкция составляет балкон, на который можно выходить.

Нижний элемент под окном наклонным. Представляет собой небольшое глухое окно под створкой, которая открывается. Применяется тогда, когда высоты ската оказывается недостаточно для установки двух окон, друг над другом. Одного же явно не достает для полноценного освещения.

Верхний элемент – надставки. Чаще всего применяется как специальный декоративный элемент, расположенный над наклонным окном. Он может иметь треугольную или округлую форму. С помощью надставок добиваются более гармоничных сочетаний.

Читайте также:
Современные материалы для звукоизоляции бетонного пола в квартире под линолеум

Окна карнизные.

Их применение является целесообразным в тех случаях, когда пристенок в мансарде слишком высокий, и он не позволяет смотреть в наклонное окно. Исправляется ситуация следующим образом. Под окном устраивается открывающееся вертикальное окно, конструкция которого открывает пейзаж в расположенном мансардном окне.

Туннель световой. Используется в нашей стране пока еще довольно редко. Его монтируют в месте ската, не имеющем с помещением прямого контакта. Светоотражающий туннель (его роль обычно играет труба) соединяет его с тем помещением, которое нуждается в дополнительном освещении. Там располагается специальный, рассеивающий свет плафон.

Мансардные окна также подразделяются по способу открывания:

  • створка с центральной осью поворота. Свободно прокручивается на 180 градусов, значительно облегчая все манипуляции (например, мытье);
  • ось поворота приподнята. У такого окна ось находится на 2/3 расстояния от его низа;
  • ось поворота комбинированная. Состоит из приподнятой и центральной осей: центральная вся прокручивается, верхняя позволяет окну открываться наружу на 45 градусов;
  • ось поворота боковая. Другое название – мансардные люки, так как они могут играть роль выхода на крышу. Открываются по-обычному;
  • ось поворота нижняя. С такой осью изготавливаются исключительно створки для окон балконных. Они открываются строго вперед.
  • оснащенные дистанционным управлением. В чересчур высоких помещениях до окон трудно дотянуться, чтобы открыть их. В таких случаях используют работающий от сети пульт. К месту монтажа такого окна необходимо подвести линию электросети.

Какое окно в мансардной крыше предпочтительней?

Чердачные окна

При выборе следует исходить из особенностей конструкции кровли, параметров самого помещения мансарды, а также требований к удобству их использования.

Скажем, высота «стен» помещения, и показатель наклона ската, непосредственно влияют на то, где будет установлено окно – в каком месте, и на какой высоте. Соответственно, и какой из него возможен обзор.

Размер и устройство Мансардных окон

Любое мансардное окно – достаточно сложная конструкция, и это понятно. Оно будет эксплуатироваться в самых разных условиях, нередко достаточно жестких и сложных. Воздействие снега, ветра, ливня, града может быть усилено спецификой расположения оконной плоскости под углом. Для обеспечения устройству необходимой прочности изготовители используют особое, сверхпрочное стекло, которое легко выдерживает повышенное давление.

Существующие размеры окон Состав мансардного окна

Из чего состоит обычное окно? Это створки, рама и фурнитура, обеспечивающая его функционирование. В створку вставлен стеклопакет, который содержит внутри инертный газ. Кроме того, в комплекте имеются пароизоляционный и гидроизоляционный фартуки, дренажный желоб для избегания протечек, необходимая для нашего климата теплоизоляция, специальный защитный оклад, направляющий вниз воду и предохраняющий элементы от повреждений, и внутренние откосы. Окончательная стоимость установки такого окна зависит от предстоящего объема работ, и от наличия в комплекте тех или других составляющих.

Выбирая подходящий тип изделия, желательно посоветоваться со специалистом, который лучше осведомлен о наиболее подходящих к нему окладу и защитным аксессуарам.

Как установить окно в мансарде

Окно какого размера лучше выбрать для мансарды? Это зависит от расстояния между соседними стропилами строения, и площадью всего чердачного помещения. Существуют правила, согласно которым площадь окон должна быть не меньше одной десятой от общей площади всего чердачного помещения. Его ширина определяется расстоянием между отдельными стропилами: она должна быть на шесть сантиметров менее последнего.

Если оно слишком мало, чуть более полуметра, а окно хочется большое, придется сделать два окна рядом: между стропилами, в соседних секциях. Кстати, два окна могут дать больше света, по сравнению с одним большим.

Высота мансардного окна

Высота, на которой планируется расположить будущее окно, зависит от места расположения на нем ручки, а также от величины наклона ската к кровле.

Читайте также:
Эремурус: посадка и уход

Если крыша крутая, то для нее больше подходят внизу расположенные окна, если же она пологая – то окна лучше делать вверху.

Самой оптимальной считается высота окна в мансарде от 80 до 130 сантиметров от пола. При расположении ручки вверху его монтируют на расстоянии 110 сантиметров, если ручка находится внизу, то на 120-130.

Также высота планируемого окна зависит от типа использованного кровельного покрытия.

Тип открывания выбирается исходя из желаний владельца и его требований к удобству эксплуатации. После расчета необходимого количества окон, места их расположения и размеров, изнутри мансарды отмечается место их будущего расположения.

Оклад для окна должен быть подобран правильно. Хоть все мансардные окна и кажутся похожими, разные производители выпускают изделия разной комплектации, и с различными особенностями.

Установка мансардного окна: подготовка к монтажу

Представим, что наша крыша готова, а отделки изнутри еще нет. Внутри, на пленке гидроизоляции, отмечается расположение окна. Оно должно находиться между стропил, расстояние до них должно составлять около трех сантиметров.

Гидроизоляция окна на крыше

Гидроизоляционный материал выкраивается с запасом со всех сторон в 20 см. Оставшееся полотно на время заворачивается внутрь помещения. Вырезается или снимается покрытие крыши. Отступив пару сантиметров от стропил, срезаем саму обрешетку. Монтажный брус от пяти сантиметров толщиной прибивается внизу окна, примерно в 10 сантиметров от обрешетки, строго по уровню. Показатель расстояния зависит от типа использованного покрытия крыши. Гидроизоляционная пленка с помощью степлера крепится своим нижним краем к брусу, а ее верхний край присоединяется к обрешетке. Боковые части изоляции вытаскиваются наружу.

Установка коробки мансардного окна

В комплекте поставки всегда присутствует инструкция для грамотного монтажа мансардного окна. При установке необходимо обязательно ей пользоваться. Окна разных изготовителей несколько отличаются друг от друга: крепежные кронштейны могут крепиться к стропилам и быть прямоугольными, а могут быть угольными и крепиться к обрешетке и стропилам. К раме они присоединяются в различных положениях. Поэтому данный вопрос следует обсудить заранее.

Коробка на крыше и её установка

Чтобы облегчить монтажную процедуру, створку перед ее началом лучше снять. Если на окне имеется оклад, он также снимается. Остается лишь одна рама, без всего. На нее, в предназначенном месте, ставятся специальные крепежные кронштейны. Потом к верхней части рамы степлером прикрепляется теплоизоляционный материал, который внизу окна помещается на монтажный брус. Рама вставляется в проем, утеплитель придавливается к брусу.

утепление мансардного окна

Верхние кронштейны затягиваются не до конца, а нижние крепко: раму еще предстоит немного подравнять. Створка возвращается на свое место, проверяется ее работа, определяется отсутствие-наличие перекоса. Посредством верхнего крепления производится регулировка.

Окно должно быть расположено идеально прямо, его створка прилегать равномерно со всех сторон, имеющиеся зазоры также должны быть равными.

Все это должно быть отрегулировано сразу, потому что исправить позже будет невозможно. Затем все крепления затягиваются до упора, боковая гидроизоляция крепится к раме, лишнее срезается. Теплоизоляционный материал закладывается в боковые проемы.

Установка гидроизоляции

В комплект с окном обязательно входит специальный изоляционный фартук. Но можно сделать его самому из подходящего материала. Над будущим окном, вверху, с обеих сторон вырезается пласт обрешетки, по ширине равный размеру дренажного желоба. Гидроизоляционная пленка в этом месте подрезается посередине. Под нее заводится дренажный желоб, который устанавливается в промежуток обрешетки. Вода с гидроизоляции будет стекать не на окно, а в этот желоб.

Развернутый фартук укладывается вокруг нашего окна таким образом, чтобы защитить крышу и конструкцию от возможных протечек.

Оклад мансардного окна дома

Установку монтажа производят снизу вверх. Прежде устанавливается гофрированный фартук внизу, потом боковые части, затем верхний элемент. Накладки на окно ставятся в последнюю очередь. Все части оклада должны быть состыкованы, а затем закреплены к обрешетке и раме. Вверху к кровельному материалу прикрепляется нижний фартук. В завершении на оклад присоединяется специальный элемент: кровельный материал будет прилегать к нему вплотную.

Читайте также:
Холодильники Ariston: ТОП-10 лучших моделей, отзывы, советы по выбору оборудования

Защита от протекания

Створка вешается на прежнее место, защитная пленка с окна снимается. Для герметизации стыков при установке окна не используется монтажная пена. Можно применять только специально предназначенные для этого герметики.

Внутри мансарды следует сделать откосы, верхний из которых горизонтально, а нижний строго вертикально. С их помощью будет улучшаться циркуляция идущего от отопительных приборов нагретого воздуха. Он будет обдувать окно, благодаря чему оно не станет запотевать. Не забудьте выбрать хорошие шторы на окна, поставить противомоскитные сетки.

Чему равна электроемкость конденсатора?

Если двум изолированным друг от друга проводникам сообщить заряды 1 и 2, то между ними возникает некоторая разность потенциалов Δφ, зависящая от величин зарядов и геометрии проводников. Разность потенциалов Δφ между двумя точками в электрическом поле часто называют напряжением и обозначают буквой . Наибольший практический интерес представляет случай, когда заряды проводников одинаковы по модулю и противоположны по знаку: 1 = – 2 = . В этом случае можно ввести понятие электрической емкости .

В системе СИ единица электроемкости называется фарад (Ф):

Величина электроемкости зависит от формы и размеров проводников и от свойств диэлектрика, разделяющего проводники. Существуют такие конфигурации проводников, при которых электрическое поле оказывается сосредоточенным (локализованным) лишь в некоторой области пространства. Такие системы называются конденсаторами , а проводники, составляющие конденсатор, – обкладками .

Простейший конденсатор – система из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика. Такой конденсатор называется плоским . Электрическое поле плоского конденсатора в основном локализовано между пластинами (рис. 1.6.1); однако, вблизи краев пластин и в окружающем пространстве также возникает сравнительно слабое электрическое поле, которое называют полем рассеяния . В целом ряде задач приближенно можно пренебрегать полем рассеяния и полагать, что электрическое поле плоского конденсатора целиком сосредоточено между его обкладками (рис. 1.6.2). Но в других задачах пренебрежение полем рассеяния может привести к грубым ошибкам, так как при этом нарушается потенциальный характер электрического поля (см. § 1.4).

Каждая из заряженных пластин плоского конденсатора создает вблизи поверхности электрическое поле, модуль напряженности которого выражается соотношением (см. § 1.3)

Согласно принципу суперпозиции, напряженность поля, создаваемого обеими пластинами, равна сумме напряженностей и полей каждой из пластин:

Внутри конденсатора вектора и параллельны; поэтому модуль напряженности суммарного поля равен

(сферический конденсатор),
(цилиндрический конденсатор).

Таким образом, при параллельном соединении электроемкости складываются.

При последовательном соединении конденсаторов складываются обратные величины емкостей.

Формулы для параллельного и последовательного соединения остаются справедливыми при любом числе конденсаторов, соединенных в батарею.

Электроемкость. Конденсаторы

Что такое электроемкость проводников

Если у нас есть два проводника, изолированных друг от друга, которым мы сообщаем некоторые заряды (обозначим их соответственно q 1 и q 2 ), то между ними возникнет определенная разность потенциалов. Ее величина будет зависеть от формы проводников, а также от исходных величин зарядов. Обозначим такую разность Δ φ . Если мы говорим о разности, возникающей в электрическом поле между двумя точками, то ее обычно обозначают U .

В рамках темы данной статьи нам больше всего интересна такая разность потенциалов между проводниками, когда их заряды противоположны по знаку, но равны друг другу по модулю. В таком случае мы можем ввести новое понятие – электрическая емкость (электроемкость).

Читайте также:
Спальня с навесными шкафами по бокам кровати

Электрической емкостью системы, состоящей из двух проводников, называется отношение заряда одного проводника ( q ) к разности потенциалов между этими двумя проводниками.

В виде формулы это записывается так: C = q ∆ φ = q U .

Для измерения электрической емкости применяется единица, называемая фарад. Она обозначается буквой Ф .

Конфигурации и размеры проводников, а также свойства диэлектрика определяют величину электроемкости заданной системы. Наибольший интерес для нас представляют проводники особой формы, называемые конденсаторами.

Конденсатор – это проводник, конфигурация которого позволяет локализовать (сосредотачивать) электрическое поле в одной выделенной части пространства. Проводники, составляющие конденсатор, называются обкладками.

Если мы возьмем две плоские пластины из проводящего материала, расположим их на небольшом расстоянии друг от друга и проложим между ними слой диэлектрика, то мы получим простейший конденсатор, называемый плоским. При его работе электрическое поле будет располагаться преимущественно в промежутке между пластинами, но небольшая часть этого поля будет рассеиваться вокруг них.

Часть электрического поля вблизи конденсатора называется полем рассеяния.

Иногда в задачах мы можем не учитывать его и работать только с той частью электрического поля, которое расположено между обкладками. Однако пренебрегать полем рассеяния допустимо далеко не всегда, поскольку это может привести к ошибочным расчетам из-за нарушения потенциального характера электрического поля.

Рисунок 1 . 6 . 1 . Электрическое поле в плоском конденсаторе.

Рисунок 1 . 6 . 2 . Электрическое поле конденсатора без учета поля рассеяния, не обладающее потенциальностью.

Модуль напряженности электрического поля, которое создает каждая обкладка в плоском конденсаторе, выражается соотношением следующего вида:

Исходя из принципа суперпозиции, можно утверждать, что напряженность E → поля, которое создают обе пластины конденсатора, будет равна сумме напряженностей E + → и E – → полей каждой пластины, то есть E → = E + → + E – → .

Векторы напряженностей обеих пластин во внутренней части конденсатора будут параллельны друг другу. Значит, мы можем выразить модуль напряженности их суммарного поля в виде формулы E = 2 E 1 = σ ε 0 .

Как рассчитать электроемкость конденсатора

Вне пластин векторы напряженности будут направлены в противоположные друг от друга стороны, значит, E будет равно нулю. Если мы обозначим заряд каждой обкладки как q , а ее площадь как S , то соотношение q S даст нам представление о поверхностной плотности. Умножив E на расстояние между обкладками ( d ) , мы получим разность потенциалов между пластинами в однородном электрическом поле. Теперь возьмем оба этих соотношения и выведем из них формулу, по которой может быть рассчитана электрическая емкость конденсатора.

C = q ∆ φ = σ · S E · d = ε 0 S d .

Электрическая емкость плоского конденсатора – величина, обратно пропорциональная расстоянию между обкладками и прямо пропорциональная их площади.

Заполнение пространства между проводниками диэлектрическим материалом может увеличить электроемкость плоского конденсатора в число раз, кратное undefined.

Введем обозначение емкости в виде буквы С и запишем это в виде формулы:

Данная формула называется формулой электроемкости плоского конденсатора.

Конденсаторы бывают не только плоскими. Возможны и другие конфигурации, также обладающие специфическими свойствами.

Сферическим конденсатором называется система из 2 -х концентрических сфер, сделанных из проводящего материала, радиусы которых равны R 1 и R 2 соответственно.

Цилиндрическим конденсатором называется системы из двух проводников цилиндрической формы, длина которых равна L , а радиусы R 1 и R 2 .

Обозначим проницаемость диэлектрического материала как ε и запишем формулы, по которым можно найти электрическую емкость конденсаторов:

  • C = 4 πε 0 ε R 1 R 2 R 2 – R 1 (сферический конденсатор),
  • C = 2 π ε 0 ε L ln R 2 R 1 (цилиндрический конденсатор).

Как рассчитать электроемкость батареи конденсаторов

Если мы соединим несколько проводников между собой, то мы получим конструкцию, называемую батареей.

Способы соединения могут быть разными. Если соединение будет параллельным, то напряжение всех конденсаторов в системе будет одинаково: U 1 = U 2 = U , а заряды можно найти по формулам q 1 = С 1 U и q 2 = C 2 U . При таком соединении вся система может считаться одним конденсатором, электроемкость которого равна C , заряд – q = q 1 + q 2 , а напряжение – U . В виде формулы это выглядит так:

Читайте также:
Шлифовка мраморного пола своими руками

С = q 1 + q 2 U или C = C 1 + C 2

Если в батарее конденсаторов элементы соединены параллельно, то для нахождения общей электроемкости нам нужно сложить емкости ее отдельных элементов.

Рисунок 1 . 6 . 3 . Конденсаторы, соединенные параллельно. C = C 1 + C 2

Рисунок 1 . 6 . 4 . Конденсаторы, соединенные последовательно: 1 C = 1 C 1 + 1 C 2

Если же батарея состоит из двух последовательно соединенных конденсаторов, то заряды обоих будут одинаковы: q 1 = q 2 = q . Найти их напряжения можно так: U 1 = q C 1 и U 2 = q C 2 . Такую систему тоже можно считать одним конденсатором, заряд которого равен q , а напряжение U = U 1 + U 2 .

C = q U 1 + U 2 или 1 C = 1 C 1 + 1 C 2

Если конденсаторы в батарее соединены последовательно, то для нахождения общей электроемкости нам нужно сложить величины, обратные емкостям каждого из них.

Справедливость обеих формул, приведенных выше, не зависит от количества конденсаторов в батарее.

Рисунок 1 . 6 . 5 . Смоделированное электрическое поле плоского конденсатора.

Электроемкость конденсатора

О чем эта статья:

Электроемкость проводников

Проводники умеют не только проводить через себя электрический ток, но и накапливать заряд. Эта способность характеризуется таким параметром, как электроемкость.

Электроемкость

C = q/φ

С — электроемкость [Ф]

q — электрический заряд [Кл]

φ — потенциал [В]

Особенность этой величины в том, что она зависит от формы проводника. Для каждого вида проводников есть своя формула расчета электроемкости. Самая популярная — формула электроемкости шара.

Электроемкость шара

C = 4πεεr

С — электроемкость [Ф]

ε — относительная диэлектрическая проницаемость среды [-]

ε — электрическая постоянная

ε = 8,85 × 10 -12 Ф/м

r — радиус шара [м]

Конденсаторы

Способность накапливать заряд — полезная штука, поэтому люди придумали конденсаторы. Это такие устройства, которые помогают применять электрическую емкость проводников в практических целях.

Конденсатор состоит из двух проводящих пластин (обкладок), разделенных диэлектриком. Между проводящими пластинами образуется электрическое поле, все силовые линии которого идут от одной обкладки к другой.

Когда заряд накапливается на обкладках, происходит процесс под названием зарядка конденсатора. Заряды на разных обкладках равны по величине и противоположны по знаку.

Электроемкость конденсатора измеряется отношением заряда на одной из обкладок к разности потенциалов между обкладками:

Электроемкость конденсатора

C = q/U

С — электроемкость [Ф]

q — электрический заряд [Кл]

U — напряжение (разность потенциалов) [В]

По закону сохранения заряда, если обкладки заряженного конденсатора соединить проводником, то заряды нейтрализуются, переходя с одной обкладки на другую. Так происходит разрядка конденсатора.

Любой конденсатор имеет предел напряжения. Если оно окажется слишком большим, то случится пробой диэлектрика, то есть разрядка произойдет прямо через диэлектрик. Такой конденсатор больше работать не будет.

Виды конденсаторов

Энергия конденсатора

У конденсатора, как и у любой системы заряженных тел, есть энергия. Чтобы зарядить конденсатор, необходимо совершить работу по разделению отрицательных и положительных зарядов. По закону сохранения энергии эта работа будет как раз равна энергии конденсатора.

Доказать, что заряженный конденсатор обладает энергией, несложно. Для этого понадобится электрическая цепь, содержащая в себе лампу накаливания и конденсатор. При разрядке конденсатора вспыхнет лампа — это будет означать, что энергия конденсатора превратилась в тепло и энергию света.

Чтобы вывести формулу энергии плоского конденсатора, нам понадобится формула энергии электростатического поля.

Энергия электростатического поля

Wp = qEd

Wp — энергия электростатического поля [Дж]

q — электрический заряд [Кл]

E — напряженность электрического поля [В/м]

d — расстояние от заряда [м]

В случае с конденсатором d будет представлять собой расстояние между пластинами.

Заряд на пластинах конденсатора равен по модулю, поэтому можно рассматривать напряженность поля, создаваемую только одной из пластин.

Напряженность поля одной пластины равна Е/2, где Е — напряженность поля в конденсаторе.

В однородном поле одной пластины находится заряд q, распределенный по поверхности другой пластины.

Тогда энергия конденсатора равна:

Wp = qEd/2

Разность потенциалов между обкладками конденсатора можно представить, как произведение напряженности на расстояние:

Читайте также:
Стиральные машины с вертикальной загрузкой Whirlpool: устройство, модели и выбор

U = Ed

Wp = qU/2

Эта энергия равна работе, которую совершит электрическое поле при сближении пластин.

Заменив в формуле разность потенциалов или заряд с помощью выражения для электроемкости конденсатора C = q/U, получим три различных формулы энергии конденсатора:

Энергия конденсатора

Wp = qU/2

Wp — энергия электростатического поля [Дж]

q — электрический заряд [Кл]

U — напряжение на конденсаторе [В]

Энергия конденсатора

Wp = q 2 /2C

Wp — энергия электростатического поля [Дж]

q — электрический заряд [Кл]

C — электроемкость конденсатора [Ф]

Энергия конденсатора

Wp = CU 2 /2

Wp — энергия электростатического поля [Дж]

C — электроемкость конденсатора [Ф]

U — напряжение на конденсаторе [В]

Эти формулы справедливы для любого конденсатора.

Применение конденсаторов

Конденсатор есть в каждом современном устройстве. Без него не будет работать ни один прибор. Разберем два самых наглядных примера.

Пример раз — вспышка

Без конденсатора вспышка в фотоаппарате работала бы не так, как мы привыкли, а с большими задержками, и к тому же быстро разряжала бы аккумулятор. Конденсатор в этом случае работает как батарейка. Он накапливает заряд от аккумулятора и хранит его до востребования. Когда нам нужна вспышка, конденсатор разряжается, чтобы она сработала и вылетела птичка.

Пример два — тачскрин

Тачскрин на телефоне работает по принципу, схожему с конденсатором. В самом смартфоне, конечно, тоже есть множество конденсаторов, но этот принцип куда интереснее.

Дело в том, что тело человека тоже умеет проводить электричество — у него даже есть сопротивление и электроемкость. Так что можно считать человеческий палец пластиной конденсатора — тело же проводник, почему бы и нет. Но если поднести палец к металлической пластине, получится плохой конденсатор.

В экран телефона встроена матрица из микроскопических пластинок. Когда мы подносим палец к одной из них, получается своего рода конденсатор. Когда перемещаем палец ближе к другой пластинке — еще один конденсатор. Телефон постоянно проверяет пластинки, и если обнаруживает, что у какой-то из них внезапно изменилась электроемкость, значит, рядом есть палец. Координаты пластинки с изменившейся электроемкостью передаются операционной системе телефона, а она уже решает, что с этими координатами делать.

Кстати, то же самое можно проделать, если взять обычную сосиску и поводить ей по экрану смартфона. Тачскрин будет реагировать на все контакты, как реагирует на человеческий палец.

Это не единственный вариант реализации тачскрина, но один из лучших на сегодняшний день. В айфоне используется именно он.

Чему равна электроемкость конденсатора?

Электроемкость конденсатора – это характеристика двух проводников, которые находятся в теле устройства. Эта величина не зависит от номинала заряда и величины его напряжения. На нее влияют геометрия и габариты самых проводников, их месторасположения относительно друг друга, а также технических характеристик диэлектрика, который находится между ними и его свойств.

Большая часть этих радиодеталей имеют плоский вид. В качестве проводников используются пластины из алюминия или фольги из него. В качестве диэлектрика выступает бумага, пропитанная парафином или слюда. Они так и называются – слюдяные, бумажные или воздушные.

В данной статьи рассмотрены все вопросы по расчеты электроемкости конденсаторов. В качестве бонуса. в конце статьи читатель найдет видеоролик по теме и интересный материал, расчету электроемкости.

Электроемкость

Электроемкость — это скалярная величина, характеризующая способность проводника накапливать электрический заряд.

  • не зависит от q и U;
  • зависит от геометрических размеров проводника, их формы, взаимного расположения, электрических свойств среды между проводниками.

Электрической емкостью проводника наз. отношение заряда проводника к его потенциалу:

единица измерения емкости в СИ: Ф (фарад)

Конденсатор обладает свойством накапливать и сохранять электрическую энергию. Конденсатор представляет собой систему из двух проводников, разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Проводники наз. обкладками конденсатора. Если заряды пластин конденсатора одинаковы по модулю и противоположны по знаку, то под зарядом конденсатора понимают абсолютное значение заряда одной из его обкладок.

Читайте также:
Что такое анкерный болт и его применение?

Электроемкостью конденсатора называют отношение заряда конденсатора к разности потенциалов между обкладками. Основные слагаемые электроемкости представлены на рисунке ниже:

Обозначение на электрических схемах:

  • Все электрическое поле сосредоточено внутри конденсатора.
  • Заряд конденсатора — это абсолютное значение заряда одной из обкладок конденсатора.
  • по виду диэлектрика — воздушные, слюдяные, керамические, электролитические.
  • по форме обкладок — плоские, сферические.
  • по величине емкости — постоянные, переменные (подстроечные).

Электроемкость плоского конденсатора

где S — площадь пластины (обкладки) конденсатора

  • d — расстояние между пластинами
  • εо — электрическая постоянная

ε — диэлектрическая проницаемость диэлектрика

Конденсатор — это система заряженных тел обладает энергией.

Энергия любого конденсатора:

где С — емкость конденсатора, (Ф) W— энергия (Дж)
q — заряд конденсатора, (Кл)
U — напряжение на обкладках конденсатора, (В

Электрическая емкость конденсатора

Дальнейшие опыты с распределением электричества по поверхности наэлектризованного проводника, проводимые Кулоном и другими естествоиспытателями, позволили установить, что равномерное распределение электричества имеет место только на правильной шаровой поверхности. В общем случае заряд неравномерен и зависит от формы проводника, будучи больше в местах большей кривизны. Отношение количества электричества на части поверхности проводника к величине этой поверхности назвали плотностью (толщиной) электрического слоя. Экспериментально было установлено, что электрическая плотность и электрическая сила особенно велики в местах поверхности, имеющих наибольшую кривизну, особенно на остриях.

Величину, характеризующую зависимость потенциала наэлектризованного проводника от его размеров, формы и окружающей среды, называют электроемкостью проводника и обозначают буквой С. Электроемкость проводника измеряется количеством электричества, необходимым для повышения потенциала этого проводника на единицу:

За единицу электроемкости в системе СИ принимается 1 фарада (1 Ф). Фарадой называется электроемкость проводника, которому для повышения его потенциала на один вольт нужно сообщить один кулон электричества. Электроемкостью, равной 1 Ф, обладал бы шар радиусом 9·10 6 км, что в 23 раза больше расстояния от Земли до Луны. Если проводник соединить с источником электричества определенного потенциала, то проводник получит электрический заряд, зависящий от емкости проводника. Его емкость, а, следовательно, и количество электричества, которым он заряжается, увеличиваются, если приблизить к нему второй проводник, соединенный с землей.

Конструкция, состоящая из двух проводников, разделенных изолятором, с электрическим полем между ними, все силовые линии которого начинаются на одном проводнике, а заканчиваются на другом, была названа электрическим конденсатором. При этом оба проводника называются обкладками, а изолирующая прокладка – диэлектриком. Процесс накопления зарядов на обкладках конденсатора называется его зарядкой. При зарядке на обеих обкладках накапливаются равные по величине и противоположные по знаку заряды.

Поскольку электрическое поле заряженного конденсатора сосредоточено в пространстве между его обкладками, то электроемкость конденсатора не зависит от окружающих тел. Электроемкость конденсатора измеряется отношением количества электричества на одной из обкладок к разности потенциалов между обкладками:

1 Ф – электроемкость такого конденсатора, который может быть заряжен количеством электричества, равным 1 Кл, до разности потенциалов между обкладками, равной 1 В. Например, электрическая емкость плоского конденсатора в системе СИ определяется по соотношению:

С =εε 0 S/ d, где ε – диэлектрическая проницаемость материала, находящегося между обкладками конденсатора; ε 0 – диэлектрическая проницаемость вакуума; S – величина площади поверхности пластины (меньшей, если они не равны); d – расстояние между пластинами.

Если обкладки заряженного конденсатора соединить проводником, то заряды будут переходить с одной обкладки на другую и нейтрализуют друг друга. Этот процесс называется разрядкой конденсатора. Каждый конденсатор рассчитан на определенное напряжение. Если напряжение между обкладками станет слишком большим, то разрядка может произойти и непосредственно через диэлектрик (без соединительного проводника), т.е. получится пробой диэлектрика.

Читайте также:
Фундамент перевернутая чаша: технология строительства

Пробитый конденсатор к дальнейшему употреблению не пригоден. Для получения электроемкости нужной величины конденсаторы соединяют в батарею. На практике встречается как параллельное, так и последовательное соединение конденсаторов.

Единицы измерения

Физическая величина, определяемая отношением заряда q одной из пластин конденсатора к напряжению между обкладками конденсатора, называется электроемкостью конденсатора:

При неизменном расположении пластин электроемкость конденсатора является постоянной величиной при любом заряде на пластинах.
Единица электроемкости в международной системе – фарад (Ф). Электроемкостью 1 Ф обладает такой конденсатор, напряжение между обкладками которого равно 1 В при сообщении обкладкам разноименных зарядов по 1 Кл. . В практике широко используются дольные единицы электроемкости – микрофарад (мкФ), нанофарад (нФ) и пикофарад (пФ):

  • 1 мкФ = 10 -6 Ф;
  • 1 нФ = 10 -9 Ф;
  • 1 пФ = 10 -12 Ф.

Электроемкость конденсатора прямо пропорциональна площади обкладок и обратно пропорциональна расстоянию между обкладками. При введении диэлектрика между обкладками конденсатора его электроемкость увеличивается в e раз. Если двум изолированным друг от друга проводникам сообщить заряды q1 и q2, то между ними возникает некоторая разность потенциалов Δφ, зависящая от величин зарядов и геометрии проводников.

Разность потенциалов Δφ между двумя точками в электрическом поле часто называют напряжением и обозначают буквой U. Наибольший практический интерес представляет случай, когда заряды проводников одинаковы по модулю и противоположны по знаку: q1 = – q2 = q. В этом случае можно ввести понятие электрической емкости.

Такие системы называются конденсаторами, а проводники, составляющие конденсатор, называются обкладками. Простейший конденсатор – система из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика.

Такой конденсатор называется плоским. Электрическое поле плоского конденсатора в основном локализовано между пластинами (рисунок 1); однако, вблизи краев пластин и в окружающем пространстве также возникает сравнительно слабое электрическое поле, которое называют полем рассеяния.

В целом ряде задач можно приближенно пренебрегать полем рассеяния и полагать, что электрическое поле плоского конденсатора целиком сосредоточено между его обкладками (рисунок 2). Но в других задачах пренебрежение полем рассеяния может привести к грубым ошибкам, так как при этом нарушается потенциальный характер электрического поля.

Согласно принципу суперпозиции, напряженность поля, создаваемого обеими пластинами, равна сумме напряженностей и полей каждой из пластин. Вне пластин вектора и направлены в разные стороны, и поэтому E = 0. Поверхностная плотность σ заряда пластин равна q/S, где q – заряд, а S – площадь каждой пластины. Разность потенциалов Δφ между пластинами в однородном электрическом поле равна Ed, где d – расстояние между пластинами. Из этих соотношений можно получить формулу для электроемкости плоского конденсатора:

Таким образом, электроемкость плоского конденсатора прямо пропорциональна площади пластин (обкладок) и обратно пропорциональна расстоянию между ними. Если пространство между обкладками заполнено диэлектриком, электроемкость конденсатора увеличивается в ε раз. Примерами конденсаторов с другой конфигурацией обкладок могут служить сферический и цилиндрический конденсаторы.

Потенциал φ (отсчитываемый от нулевого уровня на бесконечности) пропорционален заряду q проводника, т.е. отношение q к φ не зависит от q. Это позволяет ввести понятие электроемкости. С уединенного проводника, которая равна отношению заряда проводника к потенциалу:

Таким образом, чем больше электроемкость, тем больший заряд может накопить проводник при данном φ. Электроемкость определяется геометрическими размерами проводника, его формой и электрическими свойства окружающей среды (её диэлектрической проницаемостью) и не зависит от материала проводника. В частности, электроемкость проводящего шара в вакууме равна его радиусу. Наличие вблизи проводника других тел изменяет его электроемкость, так как потенциал проводника зависит и от электрических полей, создаваемых зарядами, наведенными в окружающих телах вследствие электростатической индукции.

Читайте также:
Универсальный гаечный ключ своими руками

В системе ед. СГСЭ электроемкость измеряется в сантиметрах, в СИ – в фарадах: 1Ф = 9*10 11 см.
Понятие электроемкости относится также к системе проводников, в частности двух проводников, разделённых тонким слоем диэлектрика, – электрическому конденсатору. Электроемкость конденсатора (взаимная ёмкость его обкладок)

где q – заряд одной из обкладок (заряды обкладок по абсолютной величине равны), φ1 – φ2 – разность потенциалов между обкладками. Электроемкость конденсатора практически не зависит от наличия окружающих тел и может достигать очень большой величины при малых геометрических размерах конденсаторов.

Заключение

Более подробно об электроемкости конденсаторов можно узнать прочитав материал: “Электроемкость: как рассчитать”. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Электроемкость конденсатора. Конденсаторы. Энергия заряженного конденсатора.Применение

Электроемкость — это скалярная величина, характеризующая способность проводника накапливать электрический заряд.

Электроемкость
не зависит от q и U;
зависит от геометрических размеров проводника, их формы, взаимного расположения, электрических свойств среды между проводниками.

Электрической емкостью проводника наз. отношение заряда проводника к его потенциалу: .

единица измерения емкости в СИ: Ф (фарад)

Конденсатор обладает свойством накапливать и сохранять электрическую энергию.

Конденсатор представляет собой систему из двух проводников, разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Проводники наз. обкладками конденсатора. Если заряды пластин конденсатора одинаковы по модулю и противоположны по знаку, то под зарядом конденсатора понимают абсолютное значение заряда одной из его обкладок.

Электроемкостью конденсатора называют отношение заряда конденсатора к разности потенциалов между обкладками:

Обозначение на электрических схемах:
Все электрическое поле сосредоточено внутри конденсатора.
Заряд конденсатора — это абсолютное значение заряда одной из обкладок конденсатора.

Виды конденсаторов:
1. по виду диэлектрика — воздушные, слюдяные, керамические, электролитические
2. по форме обкладок — плоские, сферические.
3. по величине емкости — постоянные, переменные (подстроечные).

Электроемкость плоского конденсатора

где S — площадь пластины (обкладки) конденсатора
d — расстояние между пластинами
εо — электрическая постоянная
ε — диэлектрическая проницаемость диэлектрика

Конденсатор — это система заряженных тел обладает энергией.
Энергия любого конденсатора:

где С — емкость конденсатора, (Ф) W энергия (Дж)
q — заряд конденсатора, (Кл)
U — напряжение на обкладках конденсатора, (В)
Энергия конденсатора равна работе, которую совершит электрическое поле при сближении пластин конденсатора вплотную, или работе по разделению положительных и отрицательных зарядов необходимой при зарядке конденсатора.

Конденсаторы применяются для накопления электрической энергии и использования ее при быстром разряде (фотовспышка), для разделения цепей постоянного и переменного тока, в радиотехнике: колебательный контур, выпрямитель и других радиоэлектронных устройствах.

Физика. 10 класс

Конспект урока

Физика, 10 класс

Урок 28. Электрическая ёмкость. Конденсатор

Перечень вопросов, рассматриваемых на уроке:

  1. Электрическая ёмкость
  2. Плоский конденсатор
  3. Энергия конденсатора

Глоссарий по теме:

Конденсатор – устройство для накопления электрического заряда.

Электроёмкостью конденсатора называют физическую величину, численно равную отношению заряда, одного из проводников конденсатора к разности потенциалов между его обкладками.

Под зарядом конденсатора понимают модуль заряда одной из его обкладок.

Последовательное соединение – электрическая цепь не имеет разветвлений. Все элементы цепи включают поочередно друг за другом. При параллельном соединении концы каждого элемента присоединены к одной и той же паре точек.

Смешанное соединение – это такое соединение, когда в цепи присутствует и последовательное, и параллельное соединение.

Энергия конденсатора прямо пропорциональна квадрату напряжённости электрического поля внутри его:

Для любых конденсаторов энергия равна половине произведения электроёмкости и квадрата напряжения.

Основная и дополнительная литература по теме:

1. Мякишев Г. Я., Буховцев Б. Б., Чаругин В. М. Физика. 10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. С. 321-330.

Читайте также:
Шкафы в стиле «прованс» в интерьере

2. Рымкевич А. П. Сборник задач по физике. 10-11 класс.- М.:Дрофа,2009. С. 97-100.

Теоретический материал для самостоятельного изучения

Конденсатор при переводе с латиницы означает, то что уплотняет, сгущает – устройство, предназначенное для накопления зарядов энергии электрического поля. Конденсатор состоит из двух одинаковых параллельных пластин, находящихся на малом расстоянии друг от друга. Главной характеристикой этого прибора, является его электроёмкость, которая зависит от площади его пластин, расстояния между ними и свойств диэлектрика.

Заряд конденсатора определяется – модулем заряда на любой одной из её обкладок. Заряд конденсатора прямо пропорционален напряжению между обкладками конденсатора. Коэффициент пропорциональности С называется электрической ёмкостью, электроёмкостью или просто ёмкостью конденсатора.

Электрической ёмкостью конденсатора называется физическая величина, которая численно равна отношению заряда, одного из проводников конденсатора к разности потенциалов между его обкладками.

Чем больше площадь проводников и чем меньше пространство заполняющего диэлектриком, тем больше увеличивается ёмкость обкладок конденсатора.

Измеряется электрическая ёмкость в Международной системе СИ в Фарадах. Эта единица имеет своё название в честь английского физика экспериментатора Майкла Фарадея который внёс большой вклад в развитие теории электромагнетизма. Один Фарад равен ёмкости такого конденсатора, между пластинами которого возникает напряжение, равное одному Вольту, при сообщении заряда в один Кулон.

Электрическая ёмкость конденсаторов определяется их конструкцией, самыми простыми из них являются плоские конденсаторы.

Чем больше площадь взаимного перекрытия обкладок и чем меньше расстояние между ними, тем значительнее будет увеличение ёмкости обкладок конденсатора. При заполнении в пространство между обкладками стеклянной пластины, электрическая ёмкость конденсатора значительно увеличивается, получается, что она зависит от свойств используемого диэлектрика.

Электрическая ёмкость плоского конденсатора зависит от площади его обкладок, расстояния между ними, диэлектрической проницаемости диэлектрика, заполняющего пространство между обкладками и определяется по формуле:

где – электрическая постоянная.

Для того чтобы получить необходимую определённую ёмкость, берут несколько конденсаторов и собирают их в батарею применяя при этом параллельное, последовательное или смешанное соединения.

Энергия конденсатора равна половине произведения заряда конденсатора напряжённости поля и расстояния между пластинами конденсатора: u = Еd

Эта энергия равна работе, которую совершит электрическое поле при сближении пластин, это поле совершает положительную работу. При этом энергия электрического поля уменьшается:

Для любых конденсаторов энергия равна половине произведения электроёмкости и квадрата напряжения:

Примеры и разбор решения заданий:

1. Плоский конденсатор, расстояние между пластинами которого равно 3 мм, заряжен до напряжения 150 В и отключен от источника питания. Разность потенциалов между пластинами возросла до 300 В.

  1. Во сколько раз увеличилась разность потенциалов между пластинами?
  2. Какое расстояние между пластинами конденсатора стало после того, как пластины были раздвинуты?
  3. Во сколько раз изменилось расстояние между пластинами.

Электрическая ёмкость конденсатора определяется по формуле:

1.По условию разность потенциалов увеличилось в два раза. U1 = 150В→ U2 = 300В.

2.По условию d = 3 мм, если разность потенциалов увеличилось в два раза, по формуле соответственно и расстояние между пластинами увеличилось в два раза, и d =2·3 мм = 6 мм.

3.Расстояние между пластинами увеличилось в два раза.

2. Конденсатор электроёмкостью 20 мкФ имеет заряд 4 мкКл. Чему равна энергия заряженного конденсатора?

Дано: С = 20 мкФ = 20 · 10 -6 Ф, q = 4 мкКл = 4·10 -6 Кл.

Энергия заряженного конденсатора W через заряд q и электрическую ёмкость С определяется по формуле:

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: